With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order...Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order to solve the tracing problem.The first method considers the proportional sharing assumption while the second one uses the circuit laws to find the relationship between power inflows and outflows through each line,generator and load connected to each bus of the network.Both methods are able to handle loop flow and loss issues in tracing problem.A formulation is also proposed to find the share of each unit in provision of each load.These methods are applied to find the producer and consumer's shares on the cost of transmission for each line in different case studies.As the results of these studies show,both methods can effectively solve the PFT problem.展开更多
随着综合能源系统(integratedenergysystems,IES)的技术发展和共享储能系统的普及,区域内部多个IES将存在能量交互,形成区域多综合能源系统(multi-integrated energy system,MIES)。研究计及电能和热能交互的MIES运行优化,考虑接入共享...随着综合能源系统(integratedenergysystems,IES)的技术发展和共享储能系统的普及,区域内部多个IES将存在能量交互,形成区域多综合能源系统(multi-integrated energy system,MIES)。研究计及电能和热能交互的MIES运行优化,考虑接入共享储能调整IES间的能量交互量,对优化IES内部机组出力、降低系统整体的运行成本具有重要意义。首先,构建了IES的设备出力和共享储能模型,考虑MIES内部各IES之间以及与外部能源网进行的电/热能交互情况,建立了考虑电热交互和共享储能的MIES运行优化模型;其次,采用混合整数线性规划方法对模型求解;最后,以区域内3个IES互联构成的MIES为例,分析了考虑电热交互以及接入共享储能系统对MIES经济性的影响。展开更多
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.
文摘Two new methods were presented for power flow tracing(PFT).These two methods were compared and the results were discussed in detail.Both methods use the active and reactive power balance equations at each bus in order to solve the tracing problem.The first method considers the proportional sharing assumption while the second one uses the circuit laws to find the relationship between power inflows and outflows through each line,generator and load connected to each bus of the network.Both methods are able to handle loop flow and loss issues in tracing problem.A formulation is also proposed to find the share of each unit in provision of each load.These methods are applied to find the producer and consumer's shares on the cost of transmission for each line in different case studies.As the results of these studies show,both methods can effectively solve the PFT problem.
文摘随着综合能源系统(integratedenergysystems,IES)的技术发展和共享储能系统的普及,区域内部多个IES将存在能量交互,形成区域多综合能源系统(multi-integrated energy system,MIES)。研究计及电能和热能交互的MIES运行优化,考虑接入共享储能调整IES间的能量交互量,对优化IES内部机组出力、降低系统整体的运行成本具有重要意义。首先,构建了IES的设备出力和共享储能模型,考虑MIES内部各IES之间以及与外部能源网进行的电/热能交互情况,建立了考虑电热交互和共享储能的MIES运行优化模型;其次,采用混合整数线性规划方法对模型求解;最后,以区域内3个IES互联构成的MIES为例,分析了考虑电热交互以及接入共享储能系统对MIES经济性的影响。