The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity...At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity liquid at normal temperature,but it can be solidified above 80℃.The plugging degree is up to 99%at 250℃.The sweep efficiency reaches 59.2%,which is 7.3%higher than pure steam injection.In addition,simultaneous injection of viscosity reducer and/or nitrogen foams can further enhance oil recovery.The mechanism of this technology depends on its strong plugging ability,which changes the flowing pattern of steam to effectively mobilize remaining oil.Viscosity reducer and nitrogen foams further expand the sweep range and extends the effective period.Therefore,thermal solidification agent can plug steam channeling paths and adjust steam flowing direction to significantly enhance oil recovery at high cycles of steam huff&puff.展开更多
The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well produc...The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well production with different reservoir conditions and to provide theoretical support for the scientific selection of methods for bottom water reservoirs,a numerical simulation method is presented in this study,which is able to deal with wellbore reservoir coupling under screen tube,perforation,and ICD(Inflow Control Device)completion.Assuming the geological characteristics of the bottom-water conglomerate reservoir in the Triassic Formation of the Tahe Block 9 as a test case,the three aforementioned completion methods are tested to predict the transient production characteristics.The impact of completion parameters,reservoir permeability,bottom-water energy,and individual well control on the time to encounter water in horizontal wells(during a water-free production period)is discussed.A boundary chart for the selection of completion methods is introduced accordingly.The results show that the optimized ICD completion development effect for heterogeneous reservoirs is the best,followed by optimized perforation completion.Permeability is the main factor affecting the performances of completion methods,while bottom water energy and single well controlled reserves have a scarce impact.The average permeability of the reservoir is less than 500 mD,and ICD has the best water control effect.If the permeability is greater than 500 mD,the water control effect of perforation completion becomes a better option.展开更多
CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability...CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing.展开更多
C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The compre...C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The comprehensive water cut of the oilfield was 95.3%, which had entered the stage of high water cut oil production. Some reservoirs were limited by crude oil viscosity and oil column height. Under the condition of existing development well pattern, some reserves were not produced or the degree of production was low, and the degree of well control was not high, so there is room for tapping the potential of remaining oil. This paper studied the rising law of water ridge of horizontal wells in bottom water reservoir by reservoir engineering method, and guided the infilling limit of horizontal wells in bottom water reservoir. At the same time, combined with the research results of fine reservoir description, the geological model was established, the numerical simulation was carried out, and the distribution law of remaining oil was analyzed. Through this study, we could understand the law of water flooding and remaining oil in the high water cut period of bottom water heavy oil reservoir, so as to provide guidance for the development strategy of this type of reservoir in the high water cut period.展开更多
The bottom water heavy oil reservoir has high natural energy, and the bottom water body multiple of the reservoir is 300 times or even higher. The natural energy of the reservoir can keep the superior condition that t...The bottom water heavy oil reservoir has high natural energy, and the bottom water body multiple of the reservoir is 300 times or even higher. The natural energy of the reservoir can keep the superior condition that the formation energy does not decrease under the condition of large liquid volume and high recovery rate. In view of this reservoir condition, we take C oilfield as an example to carry out the oilfield development effect under the condition of large liquid volume and high-speed production, and analyze the influence of high-speed production and medium low-speed production on recovery rate of similar heavy oil bottom water-reservoir. The results show that the rising trend of water cut in oilfield is the same whether high-speed development with large liquid volume or conventional low-speed development is adopted. Under the condition of high liquid production, the sweep efficiency of water flooding is high in the same period of time, which has certain advantages of enhanced oil recovery. The development mode of early large liquid production is explored, which provides certain guidance for the efficient development of heavy oil reservoir with bottom water.展开更多
Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results ...Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.展开更多
The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The ch...The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The chemical properties of reservoir water are very important for reservoir evaluation and are significant indicators of the sealing of reservoir oil and gas resources.Therefore,the caprock of the Chang 6 reservoir in the Yanchang Formation was evaluated.The authors tested and analyzed the chemical characteristics of water samples selected from 30 wells in the Chang 6 reservoir of Ansai Oilfield in the Ordos Basin.The results show that the Chang 6 reservoir water in Ansai Oilfield is dominated by calcium-chloride water type with a sodium chloride coefficient of generally less than 0.5.The chloride magnesium coefficients are between 33.7 and 925.5,most of which are greater than 200.The desulfurization coefficients range from 0.21 to 13.4,with an average of 2.227.The carbonate balance coefficients are mainly concentrated below 0.01,with an average of 0.008.The calcium and magnesium coefficients are between 0.08 and 0.003,with an average of 0.01.Combined with the characteristics of the four-corner layout of the reservoir water,the above results show that the graphics are basically consistent.The study indicates that the Chang 6 reservoir in Ansai Oilfield in the Ordos Basin is a favorable block for oil and gas storage with good sealing properties,great preservation conditions of oil and gas,and high pore connectivity.展开更多
Hydraulic fracturing facilitates the development and exploitation of unconventional reservoirs.In this study,the injected hydraulic fracturing fluid(HFF)and flowback and produced water(FPW)in tight oil reservoirs of t...Hydraulic fracturing facilitates the development and exploitation of unconventional reservoirs.In this study,the injected hydraulic fracturing fluid(HFF)and flowback and produced water(FPW)in tight oil reservoirs of the Lucaogou Formation in the Junggar Basin are temporally sampled from day 1 to day 64.Freshwater is used for fracturing,and HFF is obtained.The chemical and isotopic parameters(including the water type,total salinity,total dissolved solids(TDS),pH,concentrations of Na^(+),Cl^(-),Ba^(+),K^(+),Fe^(2+)+Fe^(3+),and CO_(3)^(2-),dD,and δ^(18)O)are experimentally obtained,and their variations with time are systematically analyzed based on the flowback water.The results show that the water type,Na/Cl ratio,total salinity,and TDS of the FPW change periodically primarily due to the HFF mixing with formation water,thus causing δD and δ^(18)O to deviate from the meteoric water line of Xinjiang.Because of watererock interaction(WRI),the concentrations of Fe^(2+)+Fe^(3+)and CO_(3)^(2-)of the FPW increase over time,with the solution pH becoming more alkaline.Furthermore,based on the significant changes observed in the geochemistry of the FPW,three separate time intervals of flowback time are identified:Stage Ⅰ(<10 days),where the FPW is dominated by the HFF and the changes in ions and isotopes are mainly caused by the WRI;Stage Ⅱ(10-37 days),where the FPW is dominated by the addition of formation water to the HFF and the WRI is weakened;and finally,Stage Ⅲ(>37 days),where the FPW is dominated by the chemistry of the formation water.The methodology implemented in this study can provide critical support for the source identification of formation water.展开更多
S oil field is a typical of water injection development of heavy oil reservoir in Bohai, and the formation of crude oil viscosity is 42 - 284 mPa?s. Due to the formation of crude oil viscosity, the oil field developme...S oil field is a typical of water injection development of heavy oil reservoir in Bohai, and the formation of crude oil viscosity is 42 - 284 mPa?s. Due to the formation of crude oil viscosity, the oil field development gradually faces a series of problems as rapid rise of water cut, rapid decline of output, high water cut of oil wells and others. In order to improve the effect of oilfield development, it is necessary to increase the output of the oilfield by adjusting wells for the potential in the oilfield. However, due to the high cost of drilling, operation and testing of offshore oilfields, offshore oilfields require more elaborate description of residual oil and adjustment wells. With the continuous downturn in international oil prices and the lack of new testing data in old oilfields, it is urgent to re-use the existing data in oilfields through innovative methods to achieve a detailed description of the remaining oil in the oilfields and improve the precision research of indexing wells and ensure the reliable implementation of adjustment wells. Based on the existing dynamic data of S oilfield, this paper proposes a new method to quantitatively evaluate water flooding coefficient by using tracer theory to establish tracer data, and quantitatively evaluates the vicinity of the fault by means of image reflection and potential superposition and find the residual oil in the imperfect area of the well network, combined with the numerical simulation method to realize the fine description of remaining oil and improve the research precision of the adjustment well. Through the research in this paper, S oilfield has proposed to location of six adjustment wells which has implemented two. The production confirmed that the method of this paper has some reliability, while the method of heavy oil in the high water cut stage of residual oil fine description. The research of enhanced oil recovery in the stage has certain guiding significance for heavy oil reservoirs.展开更多
The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mecha...The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mechanism, and the understanding of its distribution and formation mechanism will directly affect the evaluations for the reservoir type, well deployment, selection of well pattern and type, determination of test section, and reserves evaluation. Based on the analysis of reservoir characteristics, petrophysical properties and geological structure in 40 reservoirs worldwide with tilted oil-water contacts, the progress of the research on the formation mechanisms of titled oil-water contacts is summarized in terms of the hydrodynamic conditions, reservoir heterogeneity, neotectonic movement and oil-gas exploitation. According to the formation mechanism of tilted oil-water contacts and the needs of exploration research, different aspects of research methods are summarized and classified, such as the calculation of equipotential surfaces for oil and water in the formation, analysis of formation pressure and analysis of reservoir physical properties and so on. Based upon statistical analysis, it is suggested that the degree of the inclination of the oil-water contact be divided based on the dip of oil-water contact(DipTOWC). The tilted oil-water contact is divided into three categories: large dip(DipTOWC≥55 m/km), medium dip(4 m/km≤DipTOWC55 m/km), and small dip(DipTOWC4 m/km). The classification and evaluation method can be combined with structure amplitude and reservoir property. The formation mechanism of domestic and international reservoirs with tilted oil-water contacts are summarized in this paper, which have important significance in guiding the exploration and development of the oilfield with tilted oil-water contacts, reserves evaluation, and well deployment.展开更多
For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ...For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.展开更多
The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional...The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.展开更多
The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oi...The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oil. On the basis of mobility control theory, increasing the residual resistance factor not only reduces the water-oil mobility ratio but also decreases the requirement for viscosity enhancement of the polymer solution. The residual resistance factor caused by hydrophobic associating polymer solution is higher than that caused by polyacrylamide solution in brine containing high concentrations of calcium and magnesium ions. The results of numerical simulations show that the polymer flooding efficiency improved by increasing the residual resistance factor is far better than that by only increasing solution viscosity. The recovery factor of heavy oil reservoirs (70 mPa·s) can be enhanced by hydrophobic associating polymer solution of high residual resistance factor (more than 3) and high effective viscosity (24 mPa·s). Therefore, increasing the residual resistance factor of the polymer solution not only decreases the requirement for the viscosity of polymer solution injected into heavy oil reservoirs but also is favorable to enhanced oil recovery during polymer flooding.展开更多
Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacem...Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacement effectiveness of polymer flooding in heavy oil reservoirs in the service life of offshore platforms. In this paper, the effects of the water/oil mobility ratio in heavy oil reservoirs and the dimensionless oil productivity index on polymer flooding effectiveness were studied utilizing rel- ative permeability curves. The results showed that when the water saturation was less than the value, where the water/oil mobility ratio was equal to 1, polymer flooding could effectively control the increase of fractional water flow, which meant that the upper limit of water/oil ratio suitable for polymer flooding should be the value when the water/oil mobility ratio was equal to 1. Mean while, by injecting a certain volume of water to create water channels in the reservoir, the polymer flooding would be the most effective in improving sweep efficiency, and lower the fractional flow of water to the value corresponding to △Jmax. Considering the service life of the platform and the polymer mobility control capacity, the best polymer injection timing for heavy oil reservoirs was optimized. It has been tested for reservoirs with crude oil viscosity of 123 and 70 mPa s, the optimum polymer flooding effec- tiveness could be obtained when the polymer floods were initiated at the time when the fractional flow of water were 10 % and 25 %, respectively. The injection timing range for polymer flooding was also theoretically analyzed for the Bohai Oil Field utilizing which provided methods for effectiveness. relative permeability curves, improving polymer flooding展开更多
In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally ...In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally in the wellbore.Therefore,it is necessary to lower the heavy oil viscosity by heating methods to allow it to be lifted easily.Heating of heavy oil in an oil well is achieved by circulating hot water in annuli in the well(tubing-casing annulus,casing-casing annulus).In this paper,based on heat transfer principles and fluid flow theory,a model is developed for produced fluids and hot water flowing in a vertical wellbore.The temperature and pressure of produced fluids and hot water in the wellbore are calculated and the effect of hot water on heavy oil temperature is analyzed.Calculated results show that the hot water circulating in the annuli may effectively heat the heavy oil in the tubing,so as to significantly reduce both oil viscosity and resistance to oil flow.展开更多
This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoir...This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.展开更多
Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and ...Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.展开更多
The impact of reservoir emptying on the concentrations of dissolved heavy metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in pore and surface waters was studied in the Aar Reservoir, a small reservoir in central German...The impact of reservoir emptying on the concentrations of dissolved heavy metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in pore and surface waters was studied in the Aar Reservoir, a small reservoir in central Germany, during and after the emptying process. This study was conducted to observe binding changes within pore waters as well as the input of dissolved heavy metals in waters of the Aar Creek, what becomes possible when the reservoirs water table is removed and lake sediments become exposed. In pore waters, no clear shifting tendencies between dissolved and sorbed heavy metal fractions could be found after the completed sediment exposure. These relatively low dynamics in pore waters can be explained by the fine texture of the lake sediments, which are characterized by a high water holding capacity, what led to high remaining water contents and therefore slowed down the redox changes. A few days after the completed emptying, a general increase of dissolved heavy metal concentrations occurred in running waters of the Aar Creek as a result of pore water drainage. Here, element specific differences in mobilization and transportation abilities were found, what can be reconstructed by the ratio of dissolved heavy metals in pore and surface waters.展开更多
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金supported by National Natural Science Foundation of China(52074321)Natural Science Foundation of Beijing Municipality,China(3192026)。
文摘At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity liquid at normal temperature,but it can be solidified above 80℃.The plugging degree is up to 99%at 250℃.The sweep efficiency reaches 59.2%,which is 7.3%higher than pure steam injection.In addition,simultaneous injection of viscosity reducer and/or nitrogen foams can further enhance oil recovery.The mechanism of this technology depends on its strong plugging ability,which changes the flowing pattern of steam to effectively mobilize remaining oil.Viscosity reducer and nitrogen foams further expand the sweep range and extends the effective period.Therefore,thermal solidification agent can plug steam channeling paths and adjust steam flowing direction to significantly enhance oil recovery at high cycles of steam huff&puff.
文摘The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well production with different reservoir conditions and to provide theoretical support for the scientific selection of methods for bottom water reservoirs,a numerical simulation method is presented in this study,which is able to deal with wellbore reservoir coupling under screen tube,perforation,and ICD(Inflow Control Device)completion.Assuming the geological characteristics of the bottom-water conglomerate reservoir in the Triassic Formation of the Tahe Block 9 as a test case,the three aforementioned completion methods are tested to predict the transient production characteristics.The impact of completion parameters,reservoir permeability,bottom-water energy,and individual well control on the time to encounter water in horizontal wells(during a water-free production period)is discussed.A boundary chart for the selection of completion methods is introduced accordingly.The results show that the optimized ICD completion development effect for heterogeneous reservoirs is the best,followed by optimized perforation completion.Permeability is the main factor affecting the performances of completion methods,while bottom water energy and single well controlled reserves have a scarce impact.The average permeability of the reservoir is less than 500 mD,and ICD has the best water control effect.If the permeability is greater than 500 mD,the water control effect of perforation completion becomes a better option.
基金supported by the Cutting-Edge Project Foundation of Petro-China(Cold-Based Method to Enhance Heavy Oil Recovery)(Grant No.2021DJ1406)Open Fund(PLN201802)of National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing.
文摘C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The comprehensive water cut of the oilfield was 95.3%, which had entered the stage of high water cut oil production. Some reservoirs were limited by crude oil viscosity and oil column height. Under the condition of existing development well pattern, some reserves were not produced or the degree of production was low, and the degree of well control was not high, so there is room for tapping the potential of remaining oil. This paper studied the rising law of water ridge of horizontal wells in bottom water reservoir by reservoir engineering method, and guided the infilling limit of horizontal wells in bottom water reservoir. At the same time, combined with the research results of fine reservoir description, the geological model was established, the numerical simulation was carried out, and the distribution law of remaining oil was analyzed. Through this study, we could understand the law of water flooding and remaining oil in the high water cut period of bottom water heavy oil reservoir, so as to provide guidance for the development strategy of this type of reservoir in the high water cut period.
文摘The bottom water heavy oil reservoir has high natural energy, and the bottom water body multiple of the reservoir is 300 times or even higher. The natural energy of the reservoir can keep the superior condition that the formation energy does not decrease under the condition of large liquid volume and high recovery rate. In view of this reservoir condition, we take C oilfield as an example to carry out the oilfield development effect under the condition of large liquid volume and high-speed production, and analyze the influence of high-speed production and medium low-speed production on recovery rate of similar heavy oil bottom water-reservoir. The results show that the rising trend of water cut in oilfield is the same whether high-speed development with large liquid volume or conventional low-speed development is adopted. Under the condition of high liquid production, the sweep efficiency of water flooding is high in the same period of time, which has certain advantages of enhanced oil recovery. The development mode of early large liquid production is explored, which provides certain guidance for the efficient development of heavy oil reservoir with bottom water.
基金supported by NSFC(41930425)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ008)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications(2022DQ0604-01)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)and NSFC(42274142).
文摘Heavy oil has high density and viscosity, and exhibits viscoelasticity. Gassmann's theory is not suitable for materials saturated with viscoelastic fluids. Directly applying such model leads to unreliable results for seismic inversion of heavy oil reservoir. To describe the viscoelastic behavior of heavy oil, we modeled the elastic properties of heavy oil with varying viscosity and frequency using the Cole-Cole-Maxwell (CCM) model. Then, we used a CCoherent Potential Approximation (CPA) instead of the Gassmann equations to account for the fluid effect, by extending the single-phase fluid condition to two-phase fluid (heavy oil and water) condition, so that partial saturation of heavy oil can be considered. This rock physics model establishes the relationship between the elastic modulus of reservoir rock and viscosity, frequency and saturation. The viscosity of the heavy oil and the elastic moduli and porosity of typical reservoir rock samples were measured in laboratory, which were used for calibration of the rock physics model. The well-calibrated frequency-variant CPA model was applied to the prediction of the P- and S-wave velocities in the seismic frequency range (1–100 Hz) and the inversion of petrophysical parameters for a heavy oil reservoir. The pre-stack inversion results of elastic parameters are improved compared with those results using the CPA model in the sonic logging frequency (∼10 kHz), or conventional rock physics model such as the Xu-Payne model. In addition, the inversion of the porosity of the reservoir was conducted with the simulated annealing method, and the result fits reasonably well with the logging curve and depicts the location of the heavy oil reservoir on the time slice. The application of the laboratory-calibrated CPA model provides better results with the velocity dispersion correction, suggesting the important role of accurate frequency dependent rock physics models in the seismic prediction of heavy oil reservoirs.
基金supported by the Jiangsu Natural Science Foundation project(SBK2021045820)the Chongqing Natural Science Foundation general Project(cstc2021jcyj-msxmX0624)+1 种基金the Graduate Innovation Program of China University of Mining and Technology(2022WLKXJ002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_2600).
文摘The Ordos Basin is the largest continental multi-energy mineral basin in China,which is rich in coal,oil and gas,and uranium resources.The exploitation of mineral resources is closely related to reservoir water.The chemical properties of reservoir water are very important for reservoir evaluation and are significant indicators of the sealing of reservoir oil and gas resources.Therefore,the caprock of the Chang 6 reservoir in the Yanchang Formation was evaluated.The authors tested and analyzed the chemical characteristics of water samples selected from 30 wells in the Chang 6 reservoir of Ansai Oilfield in the Ordos Basin.The results show that the Chang 6 reservoir water in Ansai Oilfield is dominated by calcium-chloride water type with a sodium chloride coefficient of generally less than 0.5.The chloride magnesium coefficients are between 33.7 and 925.5,most of which are greater than 200.The desulfurization coefficients range from 0.21 to 13.4,with an average of 2.227.The carbonate balance coefficients are mainly concentrated below 0.01,with an average of 0.008.The calcium and magnesium coefficients are between 0.08 and 0.003,with an average of 0.01.Combined with the characteristics of the four-corner layout of the reservoir water,the above results show that the graphics are basically consistent.The study indicates that the Chang 6 reservoir in Ansai Oilfield in the Ordos Basin is a favorable block for oil and gas storage with good sealing properties,great preservation conditions of oil and gas,and high pore connectivity.
基金supported by the National Natural Science Foundation of China(No.U2003102).
文摘Hydraulic fracturing facilitates the development and exploitation of unconventional reservoirs.In this study,the injected hydraulic fracturing fluid(HFF)and flowback and produced water(FPW)in tight oil reservoirs of the Lucaogou Formation in the Junggar Basin are temporally sampled from day 1 to day 64.Freshwater is used for fracturing,and HFF is obtained.The chemical and isotopic parameters(including the water type,total salinity,total dissolved solids(TDS),pH,concentrations of Na^(+),Cl^(-),Ba^(+),K^(+),Fe^(2+)+Fe^(3+),and CO_(3)^(2-),dD,and δ^(18)O)are experimentally obtained,and their variations with time are systematically analyzed based on the flowback water.The results show that the water type,Na/Cl ratio,total salinity,and TDS of the FPW change periodically primarily due to the HFF mixing with formation water,thus causing δD and δ^(18)O to deviate from the meteoric water line of Xinjiang.Because of watererock interaction(WRI),the concentrations of Fe^(2+)+Fe^(3+)and CO_(3)^(2-)of the FPW increase over time,with the solution pH becoming more alkaline.Furthermore,based on the significant changes observed in the geochemistry of the FPW,three separate time intervals of flowback time are identified:Stage Ⅰ(<10 days),where the FPW is dominated by the HFF and the changes in ions and isotopes are mainly caused by the WRI;Stage Ⅱ(10-37 days),where the FPW is dominated by the addition of formation water to the HFF and the WRI is weakened;and finally,Stage Ⅲ(>37 days),where the FPW is dominated by the chemistry of the formation water.The methodology implemented in this study can provide critical support for the source identification of formation water.
文摘S oil field is a typical of water injection development of heavy oil reservoir in Bohai, and the formation of crude oil viscosity is 42 - 284 mPa?s. Due to the formation of crude oil viscosity, the oil field development gradually faces a series of problems as rapid rise of water cut, rapid decline of output, high water cut of oil wells and others. In order to improve the effect of oilfield development, it is necessary to increase the output of the oilfield by adjusting wells for the potential in the oilfield. However, due to the high cost of drilling, operation and testing of offshore oilfields, offshore oilfields require more elaborate description of residual oil and adjustment wells. With the continuous downturn in international oil prices and the lack of new testing data in old oilfields, it is urgent to re-use the existing data in oilfields through innovative methods to achieve a detailed description of the remaining oil in the oilfields and improve the precision research of indexing wells and ensure the reliable implementation of adjustment wells. Based on the existing dynamic data of S oilfield, this paper proposes a new method to quantitatively evaluate water flooding coefficient by using tracer theory to establish tracer data, and quantitatively evaluates the vicinity of the fault by means of image reflection and potential superposition and find the residual oil in the imperfect area of the well network, combined with the numerical simulation method to realize the fine description of remaining oil and improve the research precision of the adjustment well. Through the research in this paper, S oilfield has proposed to location of six adjustment wells which has implemented two. The production confirmed that the method of this paper has some reliability, while the method of heavy oil in the high water cut stage of residual oil fine description. The research of enhanced oil recovery in the stage has certain guiding significance for heavy oil reservoirs.
文摘The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mechanism, and the understanding of its distribution and formation mechanism will directly affect the evaluations for the reservoir type, well deployment, selection of well pattern and type, determination of test section, and reserves evaluation. Based on the analysis of reservoir characteristics, petrophysical properties and geological structure in 40 reservoirs worldwide with tilted oil-water contacts, the progress of the research on the formation mechanisms of titled oil-water contacts is summarized in terms of the hydrodynamic conditions, reservoir heterogeneity, neotectonic movement and oil-gas exploitation. According to the formation mechanism of tilted oil-water contacts and the needs of exploration research, different aspects of research methods are summarized and classified, such as the calculation of equipotential surfaces for oil and water in the formation, analysis of formation pressure and analysis of reservoir physical properties and so on. Based upon statistical analysis, it is suggested that the degree of the inclination of the oil-water contact be divided based on the dip of oil-water contact(DipTOWC). The tilted oil-water contact is divided into three categories: large dip(DipTOWC≥55 m/km), medium dip(4 m/km≤DipTOWC55 m/km), and small dip(DipTOWC4 m/km). The classification and evaluation method can be combined with structure amplitude and reservoir property. The formation mechanism of domestic and international reservoirs with tilted oil-water contacts are summarized in this paper, which have important significance in guiding the exploration and development of the oilfield with tilted oil-water contacts, reserves evaluation, and well deployment.
文摘For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.
文摘The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.
基金supported by the National High Technology Research and Development Program of China (863 Program: 2006AA09Z315 and 2007AA090701-3)
文摘The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oil. On the basis of mobility control theory, increasing the residual resistance factor not only reduces the water-oil mobility ratio but also decreases the requirement for viscosity enhancement of the polymer solution. The residual resistance factor caused by hydrophobic associating polymer solution is higher than that caused by polyacrylamide solution in brine containing high concentrations of calcium and magnesium ions. The results of numerical simulations show that the polymer flooding efficiency improved by increasing the residual resistance factor is far better than that by only increasing solution viscosity. The recovery factor of heavy oil reservoirs (70 mPa·s) can be enhanced by hydrophobic associating polymer solution of high residual resistance factor (more than 3) and high effective viscosity (24 mPa·s). Therefore, increasing the residual resistance factor of the polymer solution not only decreases the requirement for the viscosity of polymer solution injected into heavy oil reservoirs but also is favorable to enhanced oil recovery during polymer flooding.
基金supported by Open Fund (CRI2012RCPS0152CN) of State Key Laboratory of Offshore Oil Exploitationthe National Science and Technology Major Project (2011ZX05024-004-01)
文摘Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacement effectiveness of polymer flooding in heavy oil reservoirs in the service life of offshore platforms. In this paper, the effects of the water/oil mobility ratio in heavy oil reservoirs and the dimensionless oil productivity index on polymer flooding effectiveness were studied utilizing rel- ative permeability curves. The results showed that when the water saturation was less than the value, where the water/oil mobility ratio was equal to 1, polymer flooding could effectively control the increase of fractional water flow, which meant that the upper limit of water/oil ratio suitable for polymer flooding should be the value when the water/oil mobility ratio was equal to 1. Mean while, by injecting a certain volume of water to create water channels in the reservoir, the polymer flooding would be the most effective in improving sweep efficiency, and lower the fractional flow of water to the value corresponding to △Jmax. Considering the service life of the platform and the polymer mobility control capacity, the best polymer injection timing for heavy oil reservoirs was optimized. It has been tested for reservoirs with crude oil viscosity of 123 and 70 mPa s, the optimum polymer flooding effec- tiveness could be obtained when the polymer floods were initiated at the time when the fractional flow of water were 10 % and 25 %, respectively. The injection timing range for polymer flooding was also theoretically analyzed for the Bohai Oil Field utilizing which provided methods for effectiveness. relative permeability curves, improving polymer flooding
基金supported by the Fundamental Research Funds for the Central Universities (No. 27R1015025A)the Natural Science Foundation of Shandong Province,China(Grant No. 05J10150300)
文摘In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally in the wellbore.Therefore,it is necessary to lower the heavy oil viscosity by heating methods to allow it to be lifted easily.Heating of heavy oil in an oil well is achieved by circulating hot water in annuli in the well(tubing-casing annulus,casing-casing annulus).In this paper,based on heat transfer principles and fluid flow theory,a model is developed for produced fluids and hot water flowing in a vertical wellbore.The temperature and pressure of produced fluids and hot water in the wellbore are calculated and the effect of hot water on heavy oil temperature is analyzed.Calculated results show that the hot water circulating in the annuli may effectively heat the heavy oil in the tubing,so as to significantly reduce both oil viscosity and resistance to oil flow.
文摘This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.
基金financially supported by the National Natural Science Foundation of China(U20B6003,52004303)Beijing Natural Science Foundation(3212020)
文摘Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.
文摘The impact of reservoir emptying on the concentrations of dissolved heavy metals (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in pore and surface waters was studied in the Aar Reservoir, a small reservoir in central Germany, during and after the emptying process. This study was conducted to observe binding changes within pore waters as well as the input of dissolved heavy metals in waters of the Aar Creek, what becomes possible when the reservoirs water table is removed and lake sediments become exposed. In pore waters, no clear shifting tendencies between dissolved and sorbed heavy metal fractions could be found after the completed sediment exposure. These relatively low dynamics in pore waters can be explained by the fine texture of the lake sediments, which are characterized by a high water holding capacity, what led to high remaining water contents and therefore slowed down the redox changes. A few days after the completed emptying, a general increase of dissolved heavy metal concentrations occurred in running waters of the Aar Creek as a result of pore water drainage. Here, element specific differences in mobilization and transportation abilities were found, what can be reconstructed by the ratio of dissolved heavy metals in pore and surface waters.