AIM: To observe the relationship between ethanol-induced oxidative damage in human primary cultured hepatocytes and cytochrome P450 2E1 (CYP2E1) activity, in order to address if inhibition of CYP2E1 could attenuate...AIM: To observe the relationship between ethanol-induced oxidative damage in human primary cultured hepatocytes and cytochrome P450 2E1 (CYP2E1) activity, in order to address if inhibition of CYP2E1 could attenuate ethanol- induced cellular damage. METHODS: The dose-dependent (25-100 mmol/L) and time-dependent (0-24 h) exposures of primary human cultured hepatocytes to ethanol were carried out. CYP2E1 activity and protein expression were detected by spectrophotometer and Western blot analysis respectively. Hepatotoxicity was investigated by determination of lactate dehydrogenase (LDH) and aspartate transaminase (AST) level in hepatocyte culture supernatants, as well as the intracellular formation of malondialdehyde (MDA). RESULTS: A dose-and time-dependent response between ethanol exposure and CYP2E1 activity in human hepatocytes was demonstrated. Moreover, there was a time-dependent increase of CYP2E1 protein after 100 mmol/L ethanol exposure. Meanwhile, ethanol exposure of hepatocytes caused a time-dependent increase of cellular MDA level, LDH, and AST activities in supernatants. Furthermore, the inhibitor of CYP2E1, diallyl sulfide (DAS) could partly attenuate the increases of MDA, LDH, and AST in human hepatocytes. CONCLUSION: A positive relationship between ethanolinduced oxidative damage in human primary cultured hepatocytes and CYP2E1 activity was exhibited, and the inhibition of CYP2E1 could partly attenuate ethanol-induced oxidative damage.展开更多
The protective effect of biphenyl dimethyl dicarboxylate (DDB) on chemically induced damages was studied in isolated suspended rat hepatocytes. The experimental results showed that DDB (200μg/106 cells) efficiently p...The protective effect of biphenyl dimethyl dicarboxylate (DDB) on chemically induced damages was studied in isolated suspended rat hepatocytes. The experimental results showed that DDB (200μg/106 cells) efficiently protected the hepatocytes against carbon tetrachloride (CC14 10 mrnol.L-1) and D-galactosamine (1 mmol.L-1) induced damages. Membranal lipid peroxidation (malondialdehyde, MDA formation) and glutamic pyruvic transaminase (GPT) release from the hepatocytes were markedly decreased. The damage of the cell surfaces of the hepatocytes were also reduced as seen under a scanning electron microscope (SEM). Pretreatment with DDB (300 mg-kg-1) orally ameliorated the reduction of liver glycogen and blood glucose caused by ip injection of D-galactosamine (800 mg-kg-1) in mice. When normal rats were given DDB 300 mg-kg-1 once daily for 10 d, the free ribosomal protein and RNA in the liver increased significantly. These results indicate that DDB is of beneficial effects on both damaged and normal hepatocytes.展开更多
Eight new 9,10-anthraquinones(1-8)including three acetonide derivatives of 3-hydroxy-2-hydroxymethyl-9,10-anthraquinones(68)were isolated from an ethanol extract of the roots of Knoxia valeriamoides.On the basis of ch...Eight new 9,10-anthraquinones(1-8)including three acetonide derivatives of 3-hydroxy-2-hydroxymethyl-9,10-anthraquinones(68)were isolated from an ethanol extract of the roots of Knoxia valeriamoides.On the basis of chemical transformation reactions of the co-occurring 14 and 15 combined with HPLC-DAD-ESI-MS analysis of the extracts,the previously and newly isolated 2-methoxymethy-and 2-ethoxymethyl-9,10-anthraquinones(4,5,and 9-13),as well as the 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone acetonide derivatives(68),were shown to be solvolytic artifacts.In the in vitro assays,compound 4 was active to protect hepatocyte(WB-F344)damage.展开更多
基金Supported by the National Science Foundation of China, No. 30271130
文摘AIM: To observe the relationship between ethanol-induced oxidative damage in human primary cultured hepatocytes and cytochrome P450 2E1 (CYP2E1) activity, in order to address if inhibition of CYP2E1 could attenuate ethanol- induced cellular damage. METHODS: The dose-dependent (25-100 mmol/L) and time-dependent (0-24 h) exposures of primary human cultured hepatocytes to ethanol were carried out. CYP2E1 activity and protein expression were detected by spectrophotometer and Western blot analysis respectively. Hepatotoxicity was investigated by determination of lactate dehydrogenase (LDH) and aspartate transaminase (AST) level in hepatocyte culture supernatants, as well as the intracellular formation of malondialdehyde (MDA). RESULTS: A dose-and time-dependent response between ethanol exposure and CYP2E1 activity in human hepatocytes was demonstrated. Moreover, there was a time-dependent increase of CYP2E1 protein after 100 mmol/L ethanol exposure. Meanwhile, ethanol exposure of hepatocytes caused a time-dependent increase of cellular MDA level, LDH, and AST activities in supernatants. Furthermore, the inhibitor of CYP2E1, diallyl sulfide (DAS) could partly attenuate the increases of MDA, LDH, and AST in human hepatocytes. CONCLUSION: A positive relationship between ethanolinduced oxidative damage in human primary cultured hepatocytes and CYP2E1 activity was exhibited, and the inhibition of CYP2E1 could partly attenuate ethanol-induced oxidative damage.
文摘The protective effect of biphenyl dimethyl dicarboxylate (DDB) on chemically induced damages was studied in isolated suspended rat hepatocytes. The experimental results showed that DDB (200μg/106 cells) efficiently protected the hepatocytes against carbon tetrachloride (CC14 10 mrnol.L-1) and D-galactosamine (1 mmol.L-1) induced damages. Membranal lipid peroxidation (malondialdehyde, MDA formation) and glutamic pyruvic transaminase (GPT) release from the hepatocytes were markedly decreased. The damage of the cell surfaces of the hepatocytes were also reduced as seen under a scanning electron microscope (SEM). Pretreatment with DDB (300 mg-kg-1) orally ameliorated the reduction of liver glycogen and blood glucose caused by ip injection of D-galactosamine (800 mg-kg-1) in mice. When normal rats were given DDB 300 mg-kg-1 once daily for 10 d, the free ribosomal protein and RNA in the liver increased significantly. These results indicate that DDB is of beneficial effects on both damaged and normal hepatocytes.
基金Financial support from the National Natural Sciences Foundation of China(NNSFC,grant Nos.30825044 and 20932007)the National Science and Technology Project of China(No.2009ZX09311-004)is acknowledged.
文摘Eight new 9,10-anthraquinones(1-8)including three acetonide derivatives of 3-hydroxy-2-hydroxymethyl-9,10-anthraquinones(68)were isolated from an ethanol extract of the roots of Knoxia valeriamoides.On the basis of chemical transformation reactions of the co-occurring 14 and 15 combined with HPLC-DAD-ESI-MS analysis of the extracts,the previously and newly isolated 2-methoxymethy-and 2-ethoxymethyl-9,10-anthraquinones(4,5,and 9-13),as well as the 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone acetonide derivatives(68),were shown to be solvolytic artifacts.In the in vitro assays,compound 4 was active to protect hepatocyte(WB-F344)damage.