Using a combination of static precompression and laser-driven shock compression, shock temperature and reflectivity of H2O have been measured up to 350 GPa and 2.1×10~4 K. Here, two calibration standards were app...Using a combination of static precompression and laser-driven shock compression, shock temperature and reflectivity of H2O have been measured up to 350 GPa and 2.1×10~4 K. Here, two calibration standards were applied to enhance temperature measurement reliability. Additionally, in temperature calculations, the discrepancy in reflectivity between active probe beam wavelength and self-emission wavelength has been taken into account to improve the data’s precision.Precompressed water’s temperature–pressure data are in very good agreement with our quantum molecular dynamics model,suggesting a superionic conductor of H2O in the icy planets’ deep interior. A sluggish slope gradually approaching Dulong–Petit limit at high temperature was found at a specific heat capacity. Also, high reflectivity and conductivity were observed at the same state. By analyzing the temperature–pressure diagram, reflectivity, conductivity and specific heat comprehensively at conditions simulating the interior of planets in this work, we found that as the pressure rises, a change in ionization appears; it is supposedly attributed to energetics of bond-breaking in the H2O as it transforms from a bonded molecular fluid to an ionic state. Such molecular dissociation in H2O is associated with the conducting transition because the dissociated hydrogen atoms contribute to electrical properties.展开更多
This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put ...This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put forward.According to the real needs of XCTD,conductivity sensor with high sensitivity is designed by principle of electromagnetic induce,the ocean conductivity from induced electromotive force has been calculated.Adding temperature correction circuit would help to reduce error of conductivity measurement because of sharply changing temperature.Advanced temperature measuring circuit of high precision and the constant current source is used to weaken effect of self-heating of resistance and fluctuation of the source.On respect of remote data transmission,LVDS is a good choice for the purpose of guarantee the quality of data transmitted and the transmission distance is reaching to thousand meters in the seawater.Modular programming method is also brought into this research aimed at improve the stability,reliability and maintainability of the whole measuring system.In February,2015,the trials in South China Sea demonstrate that the developed XCTD realize effective measurement at a speed of 6 knots and detection depth at 800 m.The consistency coefficient of the acquired data is greater than 0.99 and the success rate of probe launching is above 90%.展开更多
The femtosecond laser has been an efficient tool for optical fiber high temperature sensor construction.Here,we review the progress of optical fiber high temperature sensors based on femtosecond laser fabricated fiber...The femtosecond laser has been an efficient tool for optical fiber high temperature sensor construction.Here,we review the progress of optical fiber high temperature sensors based on femtosecond laser fabricated fiber gratings and various types of fiber in-line interferometers in silica fibers and sapphire fibers.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403200)the Science Challenge Project(Grant No.TZ2016001)
文摘Using a combination of static precompression and laser-driven shock compression, shock temperature and reflectivity of H2O have been measured up to 350 GPa and 2.1×10~4 K. Here, two calibration standards were applied to enhance temperature measurement reliability. Additionally, in temperature calculations, the discrepancy in reflectivity between active probe beam wavelength and self-emission wavelength has been taken into account to improve the data’s precision.Precompressed water’s temperature–pressure data are in very good agreement with our quantum molecular dynamics model,suggesting a superionic conductor of H2O in the icy planets’ deep interior. A sluggish slope gradually approaching Dulong–Petit limit at high temperature was found at a specific heat capacity. Also, high reflectivity and conductivity were observed at the same state. By analyzing the temperature–pressure diagram, reflectivity, conductivity and specific heat comprehensively at conditions simulating the interior of planets in this work, we found that as the pressure rises, a change in ionization appears; it is supposedly attributed to energetics of bond-breaking in the H2O as it transforms from a bonded molecular fluid to an ionic state. Such molecular dissociation in H2O is associated with the conducting transition because the dissociated hydrogen atoms contribute to electrical properties.
文摘This paper analysis the developing of expendable conductivity temperature depth measuring system(XCTD)and introduce its principle of measuring about temperature,salinity and depth of ocean.Some key techniques are put forward.According to the real needs of XCTD,conductivity sensor with high sensitivity is designed by principle of electromagnetic induce,the ocean conductivity from induced electromotive force has been calculated.Adding temperature correction circuit would help to reduce error of conductivity measurement because of sharply changing temperature.Advanced temperature measuring circuit of high precision and the constant current source is used to weaken effect of self-heating of resistance and fluctuation of the source.On respect of remote data transmission,LVDS is a good choice for the purpose of guarantee the quality of data transmitted and the transmission distance is reaching to thousand meters in the seawater.Modular programming method is also brought into this research aimed at improve the stability,reliability and maintainability of the whole measuring system.In February,2015,the trials in South China Sea demonstrate that the developed XCTD realize effective measurement at a speed of 6 knots and detection depth at 800 m.The consistency coefficient of the acquired data is greater than 0.99 and the success rate of probe launching is above 90%.
基金supported by the National Natural Science Foundation of China (No. 61975192)
文摘The femtosecond laser has been an efficient tool for optical fiber high temperature sensor construction.Here,we review the progress of optical fiber high temperature sensors based on femtosecond laser fabricated fiber gratings and various types of fiber in-line interferometers in silica fibers and sapphire fibers.