期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Phase Transformation and Thermal Stability of Aged Ti-Ni-Hf High Temperature Shape Memory Alloys 被引量:2
1
作者 Xianglong MENG Wei CAI +2 位作者 K.T.Lau L.M.Zhou Liancheng ZHAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期691-695,共5页
The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased mor... The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability. 展开更多
关键词 TiNiHf alloy high temperature shape memory alloy AGING Phase transformation
下载PDF
Martensite Aging Effect and Thermal Cyclic Characteristics in Ti-Pd and Ti-Pd-Ni High Temperature Shape Memory Alloys 被引量:2
2
作者 Wei Cai School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 15000k, China Kazuhiro Otsuka Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan E-mail: weicai@hope.hit.edu.cn 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期359-362,共4页
The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti5... The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti50Pd50-xNix (x=10, 20, 30) alloys, but no obvious thermal cycling effect was observed in Ti50Pd50Pd40Ni10 alloys and the aging effect shows a curious feature, i.e., the Af temperature does not saturate even after relatively long time aging, which is considered to be due to the occurrence of recovery recrystallization during aging. 展开更多
关键词 Ti Martensite Aging Effect and Thermal Cyclic Characteristics in Ti-Pd and Ti-Pd-Ni high temperature shape memory alloys PD Ni
下载PDF
Effect of Training on Two-way Shape Memory Effect and Its Stability in a Ti-Ni-Hf High Temperature Shape Memory Alloy 被引量:1
3
作者 XianglongMENG WeiCAI +2 位作者 K.T.LAU L.M.ZHOU LianchengZHAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期590-592,共3页
The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The res... The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The results indicated that the training procedure is beneficial to get the better TWSME. The two-way shape memory strain increases with increasing the training strain. And it decreases with increasing the training temperature. The TWSME obtained in the present alloy shows poorer stability compared with that obtained in the TiNi alloys. 展开更多
关键词 TiNiHf alloy high temperature shape memory alloy Two-way shape memory effect TRAINING
下载PDF
Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy 被引量:1
4
作者 A.Shuitcev Y.Ren +4 位作者 B.Sun G.V.Markova L.Li Y.X.Tong Y.F.Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第19期90-101,共12页
Precipitate hardening is the most easiest and effective way to enhance strain recovery properties in NiTiHf high-temperature shape memory alloys.This paper discusses the precipitation,coarsening and age hardening of H... Precipitate hardening is the most easiest and effective way to enhance strain recovery properties in NiTiHf high-temperature shape memory alloys.This paper discusses the precipitation,coarsening and age hardening of H-phase precipitates in Ni_(50)Ti_(30)Hf_(20)alloy during isothermal aging at temperatures between 450℃and 650℃for time to 75 h.The H-phase mean size and volume fraction were determined using transmission electron microscopy.Precipitation kinetics was analyzed using the Johnson-Mehl-Avrami-Kolmogorov equation and an Arrhenius type law.From these analyses,a Time-Temperature-Transformation diagram was constructed.The evolution of H-phase size suggests classical matrix diffusion limited Lifshitz-Slyozov-Wagner coarsening for all considered temperatures.The coarsening rate constants of H-phase precipitation have been determined using a modified coarsening rate equation for nondilute solutions.Critical size of H-phase precipitates for breaking down the precipitate/matrix interface coherency was estimated through a combination of age hardening and precipitate size evolution data.Moreover,time-temperature-hardness diagram was constructed from the precipitation and coarsening kinetics and age hardening of H-phase precipitates in Ni_(50)Ti_(30)Hf_(20)alloy. 展开更多
关键词 high temperature shape memory alloys NiTiHf Time-temperature-transformation diagram Coarsening kinetics H-phase
原文传递
Effects of Composition and Thermal Cycle on Transformation Behaviors,Thermal Stability and Mechanical Properties of CuAlAg Alloy 被引量:3
5
作者 Yunqing MA, Chengbao JIANG, Lifen DENG and Huibin XUDepartment of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期431-434,共4页
The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied allo... The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was found that Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al content leads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6AI-5.8Ag (wt pct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strain increased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heating process. Its poor thermal stability still needs to be improved. 展开更多
关键词 high temperature shape memory alloys CuAlAg Transformation behavior Thermal cycle Thermal stability Rare earth Mechanical property
下载PDF
Tailoring the microstructure,martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content
6
作者 Xiaoyang Yi Kuishan Sun +4 位作者 Jingjing Liu Xiaohang Zheng Xianglong Meng Zhiyong Gao Wei Cai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第24期123-130,共8页
In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The single... In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The singleα"martensite phase was dominated in Ti-Ta alloy with 2 at.%H f.Upon Hf content exceeded2 at.%,βphase started to appear.Moreover,the amount ofβphase gradually increased with Hf content increasing.The martensitic transformation temperatures continuously decreased with the increased Hf content,which was attributed to the rising of valence electron concentration.Meanwhile,Hf addition improved the thermal cycling stability of Ti-Ta alloys due to the suppression ofωprecipitation.The yield stress of Ti-Ta based alloys firstly decreased and then increased with Hf content increasing.In addition,the completely recoverable strain of 4%can be obtained in Ti-Ta alloy with 6 at.%Hf as a consequence of the higher critical stress for dislocation slip.Besieds,the Ti-Ta based alloy containing 8 at.%Hf had the superior superelasticity behavior with the fully recoverable strain of 2%at room temperature. 展开更多
关键词 Ti-Ta high temperature shape memory alloy MICROSTRUCTURE Martensitic transformation Mechanical properties Strain recovery characteristics
原文传递
Fabrication of (Ti,Hf)-rich NiTiHf Alloy Using Graphitic Mold and Crucible
7
作者 Mahdi Moshref-Javadi Majid Belbasi +1 位作者 Seyed Hossein Seyedein Mohammad Taghi Salehi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第3期280-284,共5页
In this research, fabrication of a (Ti,Hf)-rich NiTiHf alloy by using vacuum induction melting (VIM) process and a graphitic crucible was investigated. For this purpose, casts with the nominal composition of Ni49T... In this research, fabrication of a (Ti,Hf)-rich NiTiHf alloy by using vacuum induction melting (VIM) process and a graphitic crucible was investigated. For this purpose, casts with the nominal composition of Ni49Ti38Hf15 were prepared in graphitic crucible and mold. Optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) tests were employed to characterize the samples. Results demonstrated that microstructure of the first cast was composted of a B2 austenite phase as well as a great amount of two differently formed (Ti,Hf)C carbides. Moreover, no austenite *-* martensite transformation peak was detected in the DSC curve of this sample, indicating a drastic decline in the transformation temperatures. In the succeeding cast, however, owing to the formation of carbide layers on the inner surfaces of the graphitic crucible and mold during the initial casting process, the amounts of carbides decreased remarkably. This cast exhibited transformation temperatures above 100℃, while XRD pattern denoted the presence of B19t monoclinic martensite phase at room temperature. All in all, results confirmed that VIM process using graphitic mold and crucible can be considered as an appropriate method for the fabrication of (Ti,Hf)-rich NiTiHf high temperature shape memory alloys. 展开更多
关键词 high temperature shape memory alloys NITI MARTENSITE CASTING Transformation temperatures Microstructure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部