The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased mor...The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability.展开更多
The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti5...The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti50Pd50-xNix (x=10, 20, 30) alloys, but no obvious thermal cycling effect was observed in Ti50Pd50Pd40Ni10 alloys and the aging effect shows a curious feature, i.e., the Af temperature does not saturate even after relatively long time aging, which is considered to be due to the occurrence of recovery recrystallization during aging.展开更多
The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The res...The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The results indicated that the training procedure is beneficial to get the better TWSME. The two-way shape memory strain increases with increasing the training strain. And it decreases with increasing the training temperature. The TWSME obtained in the present alloy shows poorer stability compared with that obtained in the TiNi alloys.展开更多
Precipitate hardening is the most easiest and effective way to enhance strain recovery properties in NiTiHf high-temperature shape memory alloys.This paper discusses the precipitation,coarsening and age hardening of H...Precipitate hardening is the most easiest and effective way to enhance strain recovery properties in NiTiHf high-temperature shape memory alloys.This paper discusses the precipitation,coarsening and age hardening of H-phase precipitates in Ni_(50)Ti_(30)Hf_(20)alloy during isothermal aging at temperatures between 450℃and 650℃for time to 75 h.The H-phase mean size and volume fraction were determined using transmission electron microscopy.Precipitation kinetics was analyzed using the Johnson-Mehl-Avrami-Kolmogorov equation and an Arrhenius type law.From these analyses,a Time-Temperature-Transformation diagram was constructed.The evolution of H-phase size suggests classical matrix diffusion limited Lifshitz-Slyozov-Wagner coarsening for all considered temperatures.The coarsening rate constants of H-phase precipitation have been determined using a modified coarsening rate equation for nondilute solutions.Critical size of H-phase precipitates for breaking down the precipitate/matrix interface coherency was estimated through a combination of age hardening and precipitate size evolution data.Moreover,time-temperature-hardness diagram was constructed from the precipitation and coarsening kinetics and age hardening of H-phase precipitates in Ni_(50)Ti_(30)Hf_(20)alloy.展开更多
The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied allo...The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was found that Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al content leads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6AI-5.8Ag (wt pct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strain increased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heating process. Its poor thermal stability still needs to be improved.展开更多
In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The single...In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The singleα"martensite phase was dominated in Ti-Ta alloy with 2 at.%H f.Upon Hf content exceeded2 at.%,βphase started to appear.Moreover,the amount ofβphase gradually increased with Hf content increasing.The martensitic transformation temperatures continuously decreased with the increased Hf content,which was attributed to the rising of valence electron concentration.Meanwhile,Hf addition improved the thermal cycling stability of Ti-Ta alloys due to the suppression ofωprecipitation.The yield stress of Ti-Ta based alloys firstly decreased and then increased with Hf content increasing.In addition,the completely recoverable strain of 4%can be obtained in Ti-Ta alloy with 6 at.%Hf as a consequence of the higher critical stress for dislocation slip.Besieds,the Ti-Ta based alloy containing 8 at.%Hf had the superior superelasticity behavior with the fully recoverable strain of 2%at room temperature.展开更多
In this research, fabrication of a (Ti,Hf)-rich NiTiHf alloy by using vacuum induction melting (VIM) process and a graphitic crucible was investigated. For this purpose, casts with the nominal composition of Ni49T...In this research, fabrication of a (Ti,Hf)-rich NiTiHf alloy by using vacuum induction melting (VIM) process and a graphitic crucible was investigated. For this purpose, casts with the nominal composition of Ni49Ti38Hf15 were prepared in graphitic crucible and mold. Optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) tests were employed to characterize the samples. Results demonstrated that microstructure of the first cast was composted of a B2 austenite phase as well as a great amount of two differently formed (Ti,Hf)C carbides. Moreover, no austenite *-* martensite transformation peak was detected in the DSC curve of this sample, indicating a drastic decline in the transformation temperatures. In the succeeding cast, however, owing to the formation of carbide layers on the inner surfaces of the graphitic crucible and mold during the initial casting process, the amounts of carbides decreased remarkably. This cast exhibited transformation temperatures above 100℃, while XRD pattern denoted the presence of B19t monoclinic martensite phase at room temperature. All in all, results confirmed that VIM process using graphitic mold and crucible can be considered as an appropriate method for the fabrication of (Ti,Hf)-rich NiTiHf high temperature shape memory alloys.展开更多
文摘The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability.
基金This work was supported by a Grant-in-Aid fOrEncouragement of Young Scientists (W.C.) (l998-1999) from the Ministry of Educat
文摘The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti50Pd50-xNix (x=10, 20, 30) alloys, but no obvious thermal cycling effect was observed in Ti50Pd50Pd40Ni10 alloys and the aging effect shows a curious feature, i.e., the Af temperature does not saturate even after relatively long time aging, which is considered to be due to the occurrence of recovery recrystallization during aging.
文摘The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The results indicated that the training procedure is beneficial to get the better TWSME. The two-way shape memory strain increases with increasing the training strain. And it decreases with increasing the training temperature. The TWSME obtained in the present alloy shows poorer stability compared with that obtained in the TiNi alloys.
基金supported by the National Natural Sci-ence Foundation of China(Nos.52050410340 and 51971072)the Fundamental Research Funds for the Central University(No.3072021CFJ1002).
文摘Precipitate hardening is the most easiest and effective way to enhance strain recovery properties in NiTiHf high-temperature shape memory alloys.This paper discusses the precipitation,coarsening and age hardening of H-phase precipitates in Ni_(50)Ti_(30)Hf_(20)alloy during isothermal aging at temperatures between 450℃and 650℃for time to 75 h.The H-phase mean size and volume fraction were determined using transmission electron microscopy.Precipitation kinetics was analyzed using the Johnson-Mehl-Avrami-Kolmogorov equation and an Arrhenius type law.From these analyses,a Time-Temperature-Transformation diagram was constructed.The evolution of H-phase size suggests classical matrix diffusion limited Lifshitz-Slyozov-Wagner coarsening for all considered temperatures.The coarsening rate constants of H-phase precipitation have been determined using a modified coarsening rate equation for nondilute solutions.Critical size of H-phase precipitates for breaking down the precipitate/matrix interface coherency was estimated through a combination of age hardening and precipitate size evolution data.Moreover,time-temperature-hardness diagram was constructed from the precipitation and coarsening kinetics and age hardening of H-phase precipitates in Ni_(50)Ti_(30)Hf_(20)alloy.
基金supported by Aviation Science Foundation of China(ASFC),No.00G51007.
文摘The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was found that Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al content leads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6AI-5.8Ag (wt pct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strain increased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heating process. Its poor thermal stability still needs to be improved.
基金financially supported by the National Natural Science Foundation of China(Nos.51871080,51931004 and 51571073)the Talent Training Program for Shandong Province Higher Educational Youth Innovative Teams(2019)。
文摘In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The singleα"martensite phase was dominated in Ti-Ta alloy with 2 at.%H f.Upon Hf content exceeded2 at.%,βphase started to appear.Moreover,the amount ofβphase gradually increased with Hf content increasing.The martensitic transformation temperatures continuously decreased with the increased Hf content,which was attributed to the rising of valence electron concentration.Meanwhile,Hf addition improved the thermal cycling stability of Ti-Ta alloys due to the suppression ofωprecipitation.The yield stress of Ti-Ta based alloys firstly decreased and then increased with Hf content increasing.In addition,the completely recoverable strain of 4%can be obtained in Ti-Ta alloy with 6 at.%Hf as a consequence of the higher critical stress for dislocation slip.Besieds,the Ti-Ta based alloy containing 8 at.%Hf had the superior superelasticity behavior with the fully recoverable strain of 2%at room temperature.
文摘In this research, fabrication of a (Ti,Hf)-rich NiTiHf alloy by using vacuum induction melting (VIM) process and a graphitic crucible was investigated. For this purpose, casts with the nominal composition of Ni49Ti38Hf15 were prepared in graphitic crucible and mold. Optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) tests were employed to characterize the samples. Results demonstrated that microstructure of the first cast was composted of a B2 austenite phase as well as a great amount of two differently formed (Ti,Hf)C carbides. Moreover, no austenite *-* martensite transformation peak was detected in the DSC curve of this sample, indicating a drastic decline in the transformation temperatures. In the succeeding cast, however, owing to the formation of carbide layers on the inner surfaces of the graphitic crucible and mold during the initial casting process, the amounts of carbides decreased remarkably. This cast exhibited transformation temperatures above 100℃, while XRD pattern denoted the presence of B19t monoclinic martensite phase at room temperature. All in all, results confirmed that VIM process using graphitic mold and crucible can be considered as an appropriate method for the fabrication of (Ti,Hf)-rich NiTiHf high temperature shape memory alloys.