21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi...21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation.展开更多
The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistan...The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints.展开更多
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi...The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).展开更多
In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,thi...In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.展开更多
Static mechanical experiments were carried out on granite after and under different temperatures using an electro-hydraulic and servo-controlled material testing machine with a heating device. Variations in obvious fo...Static mechanical experiments were carried out on granite after and under different temperatures using an electro-hydraulic and servo-controlled material testing machine with a heating device. Variations in obvious form, stress-strain curve, peak strength, peak strain and elastic modulus with temperature were analyzed and the essence of rock failure modes was explored. The results indicate that, compared with granite after the high temperature treatment, the brittle-ductile transition critical temperature is lower, the densification stage is longer, the elastic modulus is smaller and the damage is larger under high temperature. In addition, the peak stress is lower and the peak strain is greater, but both of them change more obviously with the increase of temperature compared with that of granite after the high temperature treatment. Furthermore, the failure modes of granite after the high temperature treatment and under high temperature show a remarkable difference. Below 100 ℃, the failure modes of granite under both conditions are the same, presenting splitting failure. However, after 100 ℃, the failure modes of granite after the high temperature treatment and under high temperature present splitting failure and shear failure, respectively.展开更多
Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C)...Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.展开更多
C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high...C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.展开更多
GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Mic...GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Microstructure of the alloys was analyzed by SEM, EDX and optical microscope (OM). The effect of heat treatment on high vacuum die-casting (HVDC) GW63K alloy was also studied. The results indicate that with the increase of fast velocity, the tensile yield strength hardly changes, but the elongation first increases, then decreases. The optimum heat treatment process is solution treatment at 748 K for 2 h and aging at 473 K for 80 h. Under this condition, GW63K magnesium alloy exhibits a maximum tensile strength and elongation of 308 MPa and 9.45%. There is significant correlation between ductility and the presence of external solidified cells (ESCs). The as-cast GW63K alloy consists ofα-Mg and Mg24(Gd,Y)5 particles. After heat treatment, Gd and Y atoms dissolve intoα-Mg matrix.展开更多
High entropy alloys with the composition of FeCoNiA10.2Si0.2 were prepared by arc melting and induction melting, denoted by A1 and A2, respectively. The samples prepared by these two techniques have a face-centered cu...High entropy alloys with the composition of FeCoNiA10.2Si0.2 were prepared by arc melting and induction melting, denoted by A1 and A2, respectively. The samples prepared by these two techniques have a face-centered cubic (FCC) phase structure and a typical dendrite morphology. The tensile yield strength and maximum strength of A2 samples are about 280 and 632 MPa, respectively. Moreover~ the elongation can reach 41.7%. These two alloys prepared by the different methods possess the similar magnetic properties. The saturation magnetization and coercivity can reach 1.151 T and 1400 A/m for A1 samples and 1.015 T and 1431 A/m for A2 samples, respectively. Phases in A2 samples do not change, which are heat treated at different temperatures, then quenched in water. Only the sample, which is heat treated at 600~C for 3 h and then furnace cooled, has a new phase precipitated. Besides, the coercivity decreases obviously at this temperature. Cold rolling and the subsequent heat treatment cannot improve the magnetic properties effectively. However, cold rolling plays an important role in improving the strength.展开更多
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic ...The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.展开更多
Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was u...Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was used to in situ synthesize Fe 3Al intermetallic coating. The microstructural characterization and properties of the coating have been investigated. The microstructure was found to consist of Fe 3Al based intermetallic (D0 3 and B2) and α Fe regions together with fine oxide (α Al 2O 3) layers. TEM images of coating show that the solidified lamellae are polycrystalline and have a grain size of the order of about 150 nm , and there also exists amorphous state in some areas. It can be concluded that a very high cooling rate has been obtained during HVAS process. Moreover, the coating has relatively higher adhesion strength and microhardness, as well as lower density and porosity.展开更多
The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tens...The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposi- tion of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior.展开更多
The mechanical properties and microstructure of the 3D-printed high Co–Ni secondary hardening steel fabricated by the laser melting deposition technique was investigated using a material testing machine and electron ...The mechanical properties and microstructure of the 3D-printed high Co–Ni secondary hardening steel fabricated by the laser melting deposition technique was investigated using a material testing machine and electron microscopy. A microstructure investigation revealed that the samples consist of martensite laths, fine dispersed precipitates, and reverted austenite films at the martensite lath boundaries. The precipitates are enriched with Co and Mo. Because the sample tempered at 486°C has smaller precipitates and a higher number of precipitates per unit area, it exhibits better mechanical properties than the sample tempered at 498°C. Although the 3D-printed samples have the same phase constituents as Aer Met 100 steel, the mechanical properties are slightly worse than those of the commercial wrought Aer Met 100 steel because of the presence of voids.展开更多
The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a ho...The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a holding time of 4 h at each temperature. The effects of annealing on microstructure, mechanical and electrical properties of as-cast alloy were investigated by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that two C14 hexagonal structures remain unchanged after annealing the as-cast A1CrCuFeMnTi alloy specimens being heated to 1 100℃. Both annealed and as-cast microstructures show typical cast-dendrite morphology and similar elemental segregation. The hardness of alloys declines as the annealing temperature increases while the strength of as-cast alloy improves obviously by the annealing treatment. The electrical conductivities of annealed and as-cast alloys are influenced by the distribution of interdendrite re^ions which is rich in Cu element.展开更多
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ...The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.展开更多
The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were...The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were investigated using X-ray diffractometry(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and multi-functional testing machine. The results show that dendritic structures in cast alloy evolve into equiaxed grains after being recrystallized, with single face-centered cubic(FCC) phase detected. The most refined alloys, stemming from the highest rolling ratio(40%), exhibit the highest strength due to the grain boundary strengthening, while the variation of elongation with temperature shows a concave feature. For the coarse-grained alloys, both the ductility and work hardening ability decrease monotonically with increasing temperature. Serrated flow observed at intermediate temperatures is attributed to the effective pinning of dislocations, which manifests the occurrence of dynamic strain hardening and results in the deterioration in ductility. Besides, dimples on the fracture surfaces indicate the typical ductile rupture mode.展开更多
The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels(tensile strength≥1000 MPa,elongation≥10%) were studied.Throug...The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels(tensile strength≥1000 MPa,elongation≥10%) were studied.Through the comparison of reduction in area and hot deformation resistance at 600-1300°C,the Mo-containing steel was found to possess a higher strength and a better plasticity than the Mo-free one.The equilibrium phase diagram and atom fraction of Mo in different phases at different temperatures were calculated by Thermo-Calc software(TCW).The results analyzed by using transmission electron microscopy and TCW show that precipitates in the Mo-containing steel are primarily M23C6,which promote pearlite formation.The experimental data also show that a lower ductility point existing in the Mo-free steel at 850°C is eliminated in the Mo-containing one.This is mainly due to the segregation of Mo at grain boundaries investigated by electron probe microanalysis(EPMA),which improves the strength of grain boundaries.展开更多
To enhance the mechanical properties and corrosion resistance of magnesium alloys,high-energy shot peening(HESP)was used.According to the results,the in-situ surface nanocrystallization(ISNC)microstructure was fabrica...To enhance the mechanical properties and corrosion resistance of magnesium alloys,high-energy shot peening(HESP)was used.According to the results,the in-situ surface nanocrystallization(ISNC)microstructure was fabricated on the magnesium alloy surface,and its formation mechanism was the coordination among twins,dislocations,subgrain boundary formation and dynamic recrystallization.Under the released surface stress of sample,the residual compressive stress and microhardness rose,thus enhancing compactness of the surface passivation film Mg(OH)2.Besides,the corrosion rate dropped by 29.2% in maximum.In the polarization curve,the maximum positive shift of the corrosion potential of sample was 203 mV, and the corrosion current density decreased by 31.25% in maximum.Moreover,the compression resistance and bending resistance of the bone plate were enhanced,and the maximum improvement rates were 18.2% and 23.1%,respectively.Accordingly,HESP significantly enhanced mechanical properties and corrosion resistance of magnesium alloys.展开更多
The mechanical properties and microstructure characteristics of a high speed steel (HSS) for roll has been studied. As compared with the as-cast HSS, the spray-formed HSS have fine grain and segregation free microstru...The mechanical properties and microstructure characteristics of a high speed steel (HSS) for roll has been studied. As compared with the as-cast HSS, the spray-formed HSS have fine grain and segregation free microstructures. Carbides distribute uniformly. The morphology and types of the carbides in spray-formed HSS are different from those in as-cast HSS. The results of the high temperature tensile experiment show that, as to spray-formed HSS, there is a possibility of superplastic deformation in the range of 780-810℃.展开更多
Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC ...Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physicalcomposition, hydraulic properties, gas generation and gas permeability, and mechanical properties forHKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings wereobtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field capacitiesof decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gaspermeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorterduration and a lower potential capacity; (4) the primary compression feature for decomposed HKWCMSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation ofHKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changessignificantly with time and strain. Based on the differences of engineering properties between these twokinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including highleachate production, high leachate mounds, low LFG collection efficiency, large settlement and slopestability problem, and corresponding advice for the management and design of HKWC MSW landfills wasrecommended.展开更多
基金Sponsored by the Project to Enhance the Innovative Capabilities of Science and Technology SMEs of Shandong Province(Grant No.2023TSGC0531).
文摘21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation.
基金financially supported by Ministry of Science and Higher Education of the Russian Federation(Grant No.FENU-2023-0013)。
文摘The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints.
基金financially supported by the National Key Research and Development Program of China(2022YFB3404201)the Major Science and Technology Project of Changchun City,Jilin Province(Grant No.20210301024GX)。
文摘The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).
基金the support from the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory(Grant No.STACPL120221B03)the National Natural Science Foundation of China(Grant No.22175059).
文摘In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.
基金Projects(51304241,11472311,51322403)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China+1 种基金Project(2016zzts456)supported by Independent Exploration and Innovation Foundation of Central South University,ChinaProject(2015CB060200)supported by the National Basic Research Program of China
文摘Static mechanical experiments were carried out on granite after and under different temperatures using an electro-hydraulic and servo-controlled material testing machine with a heating device. Variations in obvious form, stress-strain curve, peak strength, peak strain and elastic modulus with temperature were analyzed and the essence of rock failure modes was explored. The results indicate that, compared with granite after the high temperature treatment, the brittle-ductile transition critical temperature is lower, the densification stage is longer, the elastic modulus is smaller and the damage is larger under high temperature. In addition, the peak stress is lower and the peak strain is greater, but both of them change more obviously with the increase of temperature compared with that of granite after the high temperature treatment. Furthermore, the failure modes of granite after the high temperature treatment and under high temperature show a remarkable difference. Below 100 ℃, the failure modes of granite under both conditions are the same, presenting splitting failure. However, after 100 ℃, the failure modes of granite after the high temperature treatment and under high temperature present splitting failure and shear failure, respectively.
基金Projects(51221001,50972121)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Introducing Talents of Discipline to Universities,ChinaProject(11-BZ-2012)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2011CB605801) supported by the National Basic Research Program of China
文摘C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.
基金Projects(51171113,51301107)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,2013T60444)supported by China Postdoctoral Science Foundation
文摘GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Microstructure of the alloys was analyzed by SEM, EDX and optical microscope (OM). The effect of heat treatment on high vacuum die-casting (HVDC) GW63K alloy was also studied. The results indicate that with the increase of fast velocity, the tensile yield strength hardly changes, but the elongation first increases, then decreases. The optimum heat treatment process is solution treatment at 748 K for 2 h and aging at 473 K for 80 h. Under this condition, GW63K magnesium alloy exhibits a maximum tensile strength and elongation of 308 MPa and 9.45%. There is significant correlation between ductility and the presence of external solidified cells (ESCs). The as-cast GW63K alloy consists ofα-Mg and Mg24(Gd,Y)5 particles. After heat treatment, Gd and Y atoms dissolve intoα-Mg matrix.
文摘High entropy alloys with the composition of FeCoNiA10.2Si0.2 were prepared by arc melting and induction melting, denoted by A1 and A2, respectively. The samples prepared by these two techniques have a face-centered cubic (FCC) phase structure and a typical dendrite morphology. The tensile yield strength and maximum strength of A2 samples are about 280 and 632 MPa, respectively. Moreover~ the elongation can reach 41.7%. These two alloys prepared by the different methods possess the similar magnetic properties. The saturation magnetization and coercivity can reach 1.151 T and 1400 A/m for A1 samples and 1.015 T and 1431 A/m for A2 samples, respectively. Phases in A2 samples do not change, which are heat treated at different temperatures, then quenched in water. Only the sample, which is heat treated at 600~C for 3 h and then furnace cooled, has a new phase precipitated. Besides, the coercivity decreases obviously at this temperature. Cold rolling and the subsequent heat treatment cannot improve the magnetic properties effectively. However, cold rolling plays an important role in improving the strength.
文摘The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.
文摘Coating structural materials with Fe 3Al based intermetallics may rapidly lead to industrial application of their environment and wear resistant features. In the present study, high velocity arc spraying (HVAS) was used to in situ synthesize Fe 3Al intermetallic coating. The microstructural characterization and properties of the coating have been investigated. The microstructure was found to consist of Fe 3Al based intermetallic (D0 3 and B2) and α Fe regions together with fine oxide (α Al 2O 3) layers. TEM images of coating show that the solidified lamellae are polycrystalline and have a grain size of the order of about 150 nm , and there also exists amorphous state in some areas. It can be concluded that a very high cooling rate has been obtained during HVAS process. Moreover, the coating has relatively higher adhesion strength and microhardness, as well as lower density and porosity.
基金financially supported by the National Natural Science Foundation of China(No.50904006)the Fundamental Research Funds for the Central Universities of China(No.FRT-TP-10-001A)
文摘The microstructures and mechanical properties of C-Mn-Cr-Nb and C-Mn-Si-Nb ultra-high strength dual-phase steels were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile test. The results show that Si can promote the transformation of austenite (γ) to ferrite (α), enlarge the (α+γ) region, and increase the aging stability of martensite by inhibiting carbide precipitation. Adding Cr leads to the formation of retained austenite and martensite/austenite (M/A) constituents, as well as the decomposi- tion of martensite during the overaging stage. Both of the steels show higher initial strain-hardening rates and two-stage strain-hardening characteristics. The C-Mn-Si-Nb steel shows the higher strain-hardening rate than the C-Mn-Cr-Nb steel in the first stage; however, there is no significant difference in the second stage. Although the tensile strength and elongation of the two steels both exceed 1000 MPa and 15%, respectively, the comprehensive mechanical properties of the C-Mn-Si-Nb steel are superior.
文摘The mechanical properties and microstructure of the 3D-printed high Co–Ni secondary hardening steel fabricated by the laser melting deposition technique was investigated using a material testing machine and electron microscopy. A microstructure investigation revealed that the samples consist of martensite laths, fine dispersed precipitates, and reverted austenite films at the martensite lath boundaries. The precipitates are enriched with Co and Mo. Because the sample tempered at 486°C has smaller precipitates and a higher number of precipitates per unit area, it exhibits better mechanical properties than the sample tempered at 498°C. Although the 3D-printed samples have the same phase constituents as Aer Met 100 steel, the mechanical properties are slightly worse than those of the commercial wrought Aer Met 100 steel because of the presence of voids.
基金Funded by the 2012 Opening Funding of National Key Laboratory on Advanced Composites in Special Environment
文摘The multi-component A1CrCuFeMnTi high entropy alloy was prepared using a vacuum arc melting process. Serial annealing processes were subsequently performed at 590 ℃, 750 ℃, 955 ℃ and 1 100 ℃ respectively with a holding time of 4 h at each temperature. The effects of annealing on microstructure, mechanical and electrical properties of as-cast alloy were investigated by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that two C14 hexagonal structures remain unchanged after annealing the as-cast A1CrCuFeMnTi alloy specimens being heated to 1 100℃. Both annealed and as-cast microstructures show typical cast-dendrite morphology and similar elemental segregation. The hardness of alloys declines as the annealing temperature increases while the strength of as-cast alloy improves obviously by the annealing treatment. The electrical conductivities of annealed and as-cast alloys are influenced by the distribution of interdendrite re^ions which is rich in Cu element.
基金Project(50574061) supported by the National Natural Science Foundation of ChinaProject(IRT0411) supported by the Changjiang Scholars and Innovative Research Team,Ministry of Education
文摘The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.
基金Project(11572306)supported by the National Natural Science Foundation of China
文摘The CoCrFeNiMn high entropy alloy was produced by homogenization, cold rolling and recrystallization. The effects of thermomechanical processing on microstructures and tensile properties at different temperatures were investigated using X-ray diffractometry(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and multi-functional testing machine. The results show that dendritic structures in cast alloy evolve into equiaxed grains after being recrystallized, with single face-centered cubic(FCC) phase detected. The most refined alloys, stemming from the highest rolling ratio(40%), exhibit the highest strength due to the grain boundary strengthening, while the variation of elongation with temperature shows a concave feature. For the coarse-grained alloys, both the ductility and work hardening ability decrease monotonically with increasing temperature. Serrated flow observed at intermediate temperatures is attributed to the effective pinning of dislocations, which manifests the occurrence of dynamic strain hardening and results in the deterioration in ductility. Besides, dimples on the fracture surfaces indicate the typical ductile rupture mode.
基金supported by the National High-tech Research and Development Program of China (No.2009AA03Z518)
文摘The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels(tensile strength≥1000 MPa,elongation≥10%) were studied.Through the comparison of reduction in area and hot deformation resistance at 600-1300°C,the Mo-containing steel was found to possess a higher strength and a better plasticity than the Mo-free one.The equilibrium phase diagram and atom fraction of Mo in different phases at different temperatures were calculated by Thermo-Calc software(TCW).The results analyzed by using transmission electron microscopy and TCW show that precipitates in the Mo-containing steel are primarily M23C6,which promote pearlite formation.The experimental data also show that a lower ductility point existing in the Mo-free steel at 850°C is eliminated in the Mo-containing one.This is mainly due to the segregation of Mo at grain boundaries investigated by electron probe microanalysis(EPMA),which improves the strength of grain boundaries.
基金Project(51872122) supported by the National Natural Science Foundation of ChinaProjects(2017GGX30140,2016JMRH0218) supported by the Key Research and Development Plan of Shandong Province,ChinaProject(2016-2020) supported by Taishan Scholar Engineering Special Funding of Shandong Province,China
文摘To enhance the mechanical properties and corrosion resistance of magnesium alloys,high-energy shot peening(HESP)was used.According to the results,the in-situ surface nanocrystallization(ISNC)microstructure was fabricated on the magnesium alloy surface,and its formation mechanism was the coordination among twins,dislocations,subgrain boundary formation and dynamic recrystallization.Under the released surface stress of sample,the residual compressive stress and microhardness rose,thus enhancing compactness of the surface passivation film Mg(OH)2.Besides,the corrosion rate dropped by 29.2% in maximum.In the polarization curve,the maximum positive shift of the corrosion potential of sample was 203 mV, and the corrosion current density decreased by 31.25% in maximum.Moreover,the compression resistance and bending resistance of the bone plate were enhanced,and the maximum improvement rates were 18.2% and 23.1%,respectively.Accordingly,HESP significantly enhanced mechanical properties and corrosion resistance of magnesium alloys.
文摘The mechanical properties and microstructure characteristics of a high speed steel (HSS) for roll has been studied. As compared with the as-cast HSS, the spray-formed HSS have fine grain and segregation free microstructures. Carbides distribute uniformly. The morphology and types of the carbides in spray-formed HSS are different from those in as-cast HSS. The results of the high temperature tensile experiment show that, as to spray-formed HSS, there is a possibility of superplastic deformation in the range of 780-810℃.
基金Financial support provided by the National Basic Research Program of China(973 Project)(Grant No.2012CB719806)
文摘Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physicalcomposition, hydraulic properties, gas generation and gas permeability, and mechanical properties forHKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings wereobtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field capacitiesof decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gaspermeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorterduration and a lower potential capacity; (4) the primary compression feature for decomposed HKWCMSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation ofHKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changessignificantly with time and strain. Based on the differences of engineering properties between these twokinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including highleachate production, high leachate mounds, low LFG collection efficiency, large settlement and slopestability problem, and corresponding advice for the management and design of HKWC MSW landfills wasrecommended.