期刊文献+
共找到65,313篇文章
< 1 2 250 >
每页显示 20 50 100
Improving the performance of crystalline Si solar cell by high-pressure hydrogenation
1
作者 Xi-Yuan Dai Yu-Chen Zhang +6 位作者 Liang-Xin Wang Fei Hu Zhi-Yuan Yu Shuai Li Shu-Jie Li Xin-Ju Yang Ming Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期548-552,共5页
We report an approach of high-pressure hydrogenation to improve the performance of crystalline Si(c-Si) solar cells.As-received p-type c-Si wafer-based PN junctions were subjected to high-pressure(2.5 MPa) hydrogen at... We report an approach of high-pressure hydrogenation to improve the performance of crystalline Si(c-Si) solar cells.As-received p-type c-Si wafer-based PN junctions were subjected to high-pressure(2.5 MPa) hydrogen atmosphere at 200 ℃,followed by evaporating antireflection layers,passivation layers,and front and rear electrodes.The efficiency of the so prepared c-Si solar cell was found to increase evidently after high-pressure hydrogenation,with a maximal enhancement of 10%.The incorporation of hydrogen by Si solar cells was identified,and hydrogen passivation of dangling bonds in Si was confirmed.Compared to the regular approach of hydrogen plasma passivation,the approach of high-pressure hydrogenation reported here needs no post-hydrogenation treatment,and can be more convenient and efficient to use in improving the performances of the c-Si and other solar cells. 展开更多
关键词 high-pressure hydrogenation Si solar cell bulk passivation
下载PDF
Application of Big Data Technology in Evaluation of Operating Status of High-pressure Hydrogenation Heat Exchanger
2
作者 Li Lujie Liu Xu +1 位作者 Du Rui Xu Peng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期17-23,共7页
The high-pressure hydrogenation heat exchanger is an impoltmlt equipment of the refinery, but it is exposed tothe problem of leakage caused by ammonium salt corrosion. Therefore, it is very important to evaluate the o... The high-pressure hydrogenation heat exchanger is an impoltmlt equipment of the refinery, but it is exposed tothe problem of leakage caused by ammonium salt corrosion. Therefore, it is very important to evaluate the operating statusof flae hydrogenation heat exchanger. To improve flae method for evaluating the operating status of hydrogenation heat ex-chmagers by using flae traditional method, flais paper proposes a new method for evaluating the operation of hydrogenationheat exchangers based on big data. To address flae noisy data common in flae industry, this paper proposes an automatednoisy interval detection algorithm. To deal with flae problem that the sensor parameters have voluminous and mtrelateddimensions, flais paper proposes a key parameter detection algorithm based on flae Pearson correlation coefficient. Finally,this paper presents a system-based health scoring algorithm based on PCA (Principal Component Analysis) to assist site op-erators in assessing the healfla of hydrogenation heat exchangers. The evaluation of flae operating status of flae hydrorefiningheat exchange device based on big data technology will help the operators to more accurately grasp the status of flae indus-trial system mad have positive guiding significance for the early warning offlae failure. 展开更多
关键词 hydrogenation heat exchanger big data state assessment
下载PDF
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
3
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
下载PDF
Towards the insights into the deactivation behavior of acetylene hydrogenation catalyst 被引量:1
4
作者 Hai-Xia Su Yang Jiao +8 位作者 Jian-Gong Shi Zhi-Wei Yuan Di Zhang Xu-Peng Wang Jing Ren Dan Liu Jian-Zhou Gui Hai-Yang Gao Xiao-Li Xu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1405-1414,共10页
A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;fi... A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;finally, the deactivation behavior of the commercial catalyst for acetylene hydrogenation were studied. The influence of various possible deactivation factors on the catalytic performance was elucidated via detailed structural characterization, surface composition analysis, and activity evaluation.The results showed that green oil, carbon deposit and sintering of active metal were the main reasons for deactivation, among which green oil and carbon deposit led to rapid deactivation, while the activity could be recovered after regeneration by high-temperature calcination. The sintering of active metal components was attributed to the high-temperature regeneration in hydrothermal conditions, which was slow but irreversible and accounted for permanent deactivation. Thus, optimizing the regeneration is expected to extend the service life of the commercial catalyst. 展开更多
关键词 ACETYLENE hydrogenation Green oil Carbon deposit SINTERING Catalyst deactivation
下载PDF
Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors 被引量:4
5
作者 GUO Xiumei WANG Shumao LIU Xiaopeng LI Zhinian LU Fang MI Jing HAO Lei JIANG Lijun 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期227-231,共5页
Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen stora... Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen storage properties were investigated. The alloy pair Ti0.9Zr0.1Mn1.4- Cr0.35V0.2Fe0.05/TiCr1.55Mn0.2Fe0.2 was optimized based on the comprehensive performance of the studied alloys. The product hydrogen with a pressure of 100 MPa could be produced from 4 MPa feed gas when hot oil was used as a heat reservoir. 展开更多
关键词 hydrogen storage alloys hydrides Laves phase compressors hydrogen
下载PDF
CO_(2) hydrogenation to methanol over the copper promoted In_(2)O_(3) catalyst 被引量:1
6
作者 Rui Zou Chenyang Shen +4 位作者 Kaihang Sun Xinbin Ma Zhuoshi Li Maoshuai Li Chang-Jun Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期135-145,I0004,共12页
The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirm... The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirmation if copper could be a good promoter for In_(2)O_(3).Herein,the Cu promoted In_(2)O_(3) catalyst was prepared using a deposition-precipitation method.Such prepared Cu/In_(2)O_(3) catalyst shows significantly higher CO_(2) conversion and space time yield(STY)of methanol,compared to the un-promoted In_(2)O_(3) catalyst.The loading of Cu facilitates the activation of both H_(2) and CO_(2) with the interface between the Cu cluster and defective In_(2)O_(3) as the active site.The Cu/In_(2)O_(3) catalyst takes the CO hydrogenation pathway for methanol synthesis from CO_(2) hydrogenation.It exhibits a unique size effect on the CO adsorption.At temperatures below 250℃,CO adsorption on Cu/In_(2)O_(3) is stronger than that on In_(2)O_(3),causing higher methanol selectivity.With increasing temperatu res,the Cu catalyst aggregates,which leads to the formation of weak CO adsorption site and causes a decrease in the methanol selectivity.Compared with other metal promoted In_(2)O_(3) catalysts,it can be concluded that the catalyst with stronger CO adsorption possesses higher methanol selectivity. 展开更多
关键词 CO_(2)hydrogenation METHANOL Cu In_(2)O_(3) CO SELECTIVITY DFT
下载PDF
Nano-scale Reinforcements and Properties of Al-Si-Cu Alloy Processed by High-Pressure Torsion
7
作者 DONG Ying WU Siyuan +4 位作者 HE Ziyang LIANG Chen CHENG Feng HE Zuwei QIAN Chenhao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1253-1259,共7页
To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu allo... To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic. 展开更多
关键词 Al-Si-Cu alloy high-pressure torsion nano-scale reinforcements ternary eutectic
下载PDF
Experimental and Finite Element Analysis of Corroded High-Pressure Pipeline Repaired by Laminated Composite
8
作者 Seyed Mohammad Reza Abtahi Saeid Ansari Sadrabadi +4 位作者 Gholam Hosein Rahimi Gaurav Singh Hamid Abyar Daniele Amato Luigi Federico 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1783-1806,共24页
Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necess... Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed. 展开更多
关键词 high-pressure pipeline composite repair ASME PCC-2 ISO 24817
下载PDF
Relationship between hydrogenation degree and pyrolysis performance of jet fuel
9
作者 Qing Liu Tinghao Jia +2 位作者 Lun Pan Jijun Zou Xiangwen Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期35-42,共8页
Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, t... Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs. 展开更多
关键词 RP-3 FUEL PYROLYSIS hydrogenation DEPOSITION
下载PDF
Understanding the dehydrogenation properties of Mg(0001)/MgH_(2)(110)interface from first principles
10
作者 Jianchuan Wang Bo Han +3 位作者 Zhiquan Zeng Shiyi Wen Fen Xu Yong Du 《Materials Reports(Energy)》 EI 2024年第1期89-94,共6页
Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may pl... Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may play a key role in the further dehydrogenation process.In this work,first-principles calculations have been used to understand the dehydrogenation properties of the Mg(0001)/MgH_(2)(110) interface.It is found that the Mg(0001)/MgH_(2)(110) interface can weaken the Mg-H bond.The removal energies for hydrogen atoms in the interface zone are significantly lower compared to those of bulk MgH_(2).In terms of H mobility,hydrogen diffusion within the interface as well as into the Mg matrix is considered.The calculated energy barriers reveal that the migration of hydrogen atoms in the interface zone is easier than that in the bulk MgH_(2).Based on the hydrogen removal energies and diffusion barriers,we conclude that the formation of the Mg(0001)/MgH_(2)(110) interface facilitates the dehydrogenation process of magnesium hydride. 展开更多
关键词 Magnesium hydrides First-principles calculation hydrogen storage materials INTERFACE hydrogen desorption
下载PDF
Enhanced Ethylene Production from Electrocatalytic Acetylene Semi-hydrogenation Over Porous Carbon-Supported Cu Nanoparticles
11
作者 Li Li Fanpeng Chen +1 位作者 Bo-Hang Zhao Yifu Yu 《Transactions of Tianjin University》 EI CAS 2024年第4期297-304,共8页
Electrocatalytic semi-hydrogenation of acetylene(C_(2)H_(2))over copper nanoparticles(Cu NPs)offers a promising non-petroleum alternative for the green production of ethylene(C2H4).However,server hydrogen evolution re... Electrocatalytic semi-hydrogenation of acetylene(C_(2)H_(2))over copper nanoparticles(Cu NPs)offers a promising non-petroleum alternative for the green production of ethylene(C2H4).However,server hydrogen evolution reaction(HER)competition in this process prominently decreases C2H4 selectivity,thereby hindering its practical application.Herein,a Cu-based composite catalyst,wherein porous carbon with nanoscale pores was used as a support,is constructed to gather the C_(2)H_(2) feedstocks for suppressing the undesirable HER.As a result,the as-prepared catalyst exhibited C_(2)H_(2) conversion of 27.1%and C_(2)H_(4) selectivity of 88.4%at a C2H4 partial current density of 0.25 A/cm^(2) under optimal−1.0 V versus reversible hydrogen electrode(RHE)under the simulated coal-derived C_(2)H_(2) atmosphere,significantly outperforming the single Cu NPs counterparts.In addition,a series of in situ and ex situ experimental results show that not only the porous nature of the carbon support but also the stabilized Cu^(0)–Cu^(+) dual active sites through the strong metal–support interactions enhance the adsorption capacity of C_(2)H_(2),leading to high C_(2)H_(2) partial pressure,restraining the HER and thus improving the C2H4 selectivity. 展开更多
关键词 ELECTROCATALYSIS Cu-based catalyst hydrogenation ETHYLENE SELECTIVITY
下载PDF
Facile molybdenum and aluminum recovery from spent hydrogenation catalyst
12
作者 Zhenhui Lv Jianan Li +3 位作者 Dong Xue Tao Yang Gang Wang Chong Peng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期72-78,共7页
Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challeng... Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challenge compared to traditional methods.In this study,we present a facile method for the recovery of molybdenum and aluminum contents from spent Mo-Ni/Al_(2)O_(3) hydrogenation catalysts through crystallization separation and coprecipitation.Furthermore,the recovered molybdenum and aluminum are utilized as active metals and carriers for the preparation of new catalysts.Their properties were thoroughly analyzed and investigated using various characterization techniques.The hydrogenation activity of these newly prepared catalysts was evaluated on a fixed-bed small-scale device and compared with a reference catalyst synthesized from commercial raw reagents.Finally,the hydrogenation activity of the catalysts was further assessed by using the entire distillate oil of coal liquefaction as the raw oil,specifically focusing on denitrogenation and aromatic saturation.This work not only offers an effective solution for recycling catalysts but also promotes sustainable development. 展开更多
关键词 Waste treatment ALUMINA hydrogenation Catalyst CRYSTALLIZATION Precipitation
下载PDF
High volumetric hydrogen density phases of magnesium borohydride at high-pressure:A first-principles study 被引量:1
13
作者 范靖 包括 +3 位作者 段德芳 汪连城 刘冰冰 崔田 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期351-359,共9页
The previously proposed theoretical and experimental structures, bond characterization, and compressibility of Mg(BH4)2 in a pressure range from 0 to 10 GPa are studied by ab initio density-functional calculations. ... The previously proposed theoretical and experimental structures, bond characterization, and compressibility of Mg(BH4)2 in a pressure range from 0 to 10 GPa are studied by ab initio density-functional calculations. It is found that the ambient pressure phases of meta-stable I41/amd and unstable P-3ml proposed recently are extra stable and cannot decompose under high pressure. Enthalpy calculation indicates that the ground state of F222 structure proposed by Zhou et al. [2009 Phys. Rev. B 79 212102] will transfer to I41/amd at 0.7 GPa, and then to a P-3ml structure at 6.3 GPa. The experimental P6122 structure (a-phase) transfers to I41/amd at 1.2 GPa. Furthermore, both I41/arnd and P-3ml can exist as high volumetric hydrogen density phases at low pressure. Their theoretical volumetric hydrogen densities reach 146.351 g H2/L and 134.028 g H2/L at ambient pressure, respectively. The calculated phonon dispersion curve shows that the I41/amd phase is dynamically stable in a pressure range from 0 to 4 CPa and the P-3ral phase is stable at pressures higher than 1 GPa. So the I41/arnd phase may be synthesized under high pressure and retained to ambient pressure. Energy band structures show that they are both always ionic crystalline and insulating with a band-gap of about 5 eV in this pressure range. In addition, they each have an anisotropic compressibility. The c axis of these structures is easy to compress. Especially, the c axis and volume of P-3ml phase are extraordinarily compressible, showing that compression along the e axis can increase the volumetric hydrogen content for both I41/amd and P-3ml structures. 展开更多
关键词 hydrogen storage material metal borohydride thermodynamic stability dynamical stability
下载PDF
Pore size effects of nanoporous carbons with ultra-high surface area on high-pressure hydrogen storage 被引量:1
14
作者 Zhen Geng Cunman Zhang +2 位作者 Dabin Wang Xiangyang Zhou Mei Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期1-8,共8页
In this work, the morphologies and pore structures of a series of corncob-derived activated carbons and zeolite templated carbon with ultrahigh surface area were carefully investigated by SEM, HRTEM and N2-sorption ch... In this work, the morphologies and pore structures of a series of corncob-derived activated carbons and zeolite templated carbon with ultrahigh surface area were carefully investigated by SEM, HRTEM and N2-sorption characterization technologies. The high-pressure hydrogen uptake performance was analyzed using standard Pressure-Composition-Temperature apparatus in order to study the pore size effects on hydrogen uptake. These as-obtained porous carbons showed different characteristics of pore size distribution as well as specific surface area. The results indicate that the most effective pores for adsorbing hydrogen depended on the storage pressure. These ultramicropores (0.65-0.85 nm) could be the most effective pores on excess H2 uptake at 1 bar, however, micropores (0.85-2 nm) would play a more important role in excess H2 uptake at higher pressure at 77 K. At room temperature, pore size effects on H2 uptake capacity were very weak. Both specific surface area and total pore volume play more important roles than pore size for H2 uptake at room temperature, which was clearly different from that at 77 K. For applications in future, the corncob-derived activated carbons can be more available than zeolite templated carbons at 77 K. Element doping enhanced hydrogen uptake could be main research direction for improving H2 uptake capacity at room temperature. 展开更多
关键词 CORNCOB activated carbon zeolite templated carbon hydrogen storage pore size effect
下载PDF
Microenvironment and electronic state modulation of Pd nanoparticles within MOFs for enhancing low-temperature activity towards DCPD hydrogenation
15
作者 Zhiyuan Liu Changan Wang +8 位作者 Ping Yang Wei Wang Hongyi Gao Guoqing An Siqi Liu Juan Chen Tingting Guo Xinmeng Xu Ge Wang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期112-122,共11页
Precise control of the local environment and electronic state of the guest is an important method of controlling catalytic activity and reaction pathways.In this paper,guest Pd NPs were introduced into a series of hos... Precise control of the local environment and electronic state of the guest is an important method of controlling catalytic activity and reaction pathways.In this paper,guest Pd NPs were introduced into a series of host UiO-67 MOFs with different functional ligands and metal nodes,the microenvironment and local electronic structure of Pd is modulated by introducing bipyridine groups and changing metal nodes(Ce_(6)O_(6) or Zr_(6)O_(6)).The bipyridine groups not only promoted the dispersion Pd NPs,but also facilitated electron transfer between Pd and UiO-67 MOFs through the formation of Pd-N bridges.Compared with Zr6 clusters,the tunability and orbital hybridisation of the 4f electronic structure in the Ce_(6) clusters modulate the electronic structure of Pd through the construction of the Ce-O-Pd interfaces.The optimal catalyst Pd/UiO-67(Ce)-bpy presented excellent low-temperature activity towards dicyclopentadiene hydrogenation with a conversion of>99% and a selectivity of>99%(50℃,10 bar).The results show that the synergy of Ce-O-Pd and Pd-N promotes the formation of active Pd^(δ+),which not only enhances the adsorption of H_(2) and electron-rich C=C bonds,but also contributes to the reduction of proton migration distance and improves proton utilization efficiency.These results provide valuable insights for investigating the regulatory role of the host MOFs,the nature of host-guest interactions,and their correlation with catalytic performance. 展开更多
关键词 Interface regulation Pd^(δ+) MICROENVIRONMENT Electronic state hydrogenation
下载PDF
Kinetics insights into size effects of carbon nanotubes'growth and their supported platinum catalysts for 4,6-dinitroresorcinol hydrogenation
16
作者 Yan Zhang Xiangxue Zhang +6 位作者 Keng Sang Wenyao Chen Gang Qian Jing Zhang Xuezhi Duan Xinggui Zhou Weikang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期133-140,共8页
Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the pr... Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the preparation of carbon nanotube(CNT)and the hydrogenation of 4,6-dinitroresorcinol(DNR)using Fe_(2)O_(3)and Pt catalysts,respectively.Various Fe_(2)O_(3)/Al_(2)O_(3)catalysts were synthesized for CNT growth through catalytic chemical vapor deposition.Our findings reveal a significant influence of Fe_(2)O_(3)nanoparticle size on the structure and yield of CNT.Specifically,CNT produced with Fe_(2)O_(3)/Al_(2)O_(3)containing 28%(mass)Fe loading exhibits abundant surface defects,an increased area for metal-particle immobilization,and a high carbon yield.This makes it a promising candidate for DNR hydrogenation.Utilizing this catalyst support,we further investigate the size effects of Pt nanoparticles on DNR hydrogenation.Larger Pt catalysts demonstrate a preference for 4,6-diaminoresorcinol generation at(100)sites,whereas smaller Pt catalysts are more susceptible to electronic properties.The kinetics insights obtained from this study have the potential to pave the way for the development of more efficient catalysts for both CNT synthesis and DNR hydrogenation. 展开更多
关键词 KINETICS Size effects Catalytic hydrogenation Active site
下载PDF
Oxygen vacancy-boosted thermocatalytic CO_(2) hydrogenation:Engineering strategies,promoting effects and mediating mechanisms
17
作者 Guiming Xie Xiaorui Wang +3 位作者 Xianfeng Li Yunming Fang Runduo Zhang Zhou-jun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期393-408,共16页
Thermocatalytic CO_(2) hydrogenation with"green"H_(2) is one of the most promising carbon-negative technologies,wherein oxygen vacancy engineering serves as a novel strategy to boost the catalytic performanc... Thermocatalytic CO_(2) hydrogenation with"green"H_(2) is one of the most promising carbon-negative technologies,wherein oxygen vacancy engineering serves as a novel strategy to boost the catalytic performance of oxide-containing catalysts.To provide theoretical guidance and promote technical progress in this important field,the status and prospect of oxygen vacancy-boosted thermocatalytic CO_(2) hydrogenation have been thoroughly reviewed herein.Specifically,fundamentals including origin,construction,characterization,and function of oxygen vacancies will be systematically summarized and oxygen vacancy-boosted hydrogenation reactions including methanation,reverse water-gas shift(RWGS),methanol synthesis,and other hydrogenation processes will be comprehensively introduced.In addition,challenges and opportunities from the perspective of engineering strategies,promoting effects,and mediating mechanisms of oxygen vacancies will be succinctly proposed.Overall,this review is expected to gain more insights into the role of oxygen vacancies and shed new light on the design of efficient oxide-containing catalysts. 展开更多
关键词 Oxygen vacancies Carbon dioxide hydrogen Thermocatalysis Oxide-containing catalysts
下载PDF
Enhanced bimetallic CuCo nanoparticles on nitrogen-doped carbon for selective hydrogenation of furfural to furfuryl alcohol through strong electronic interactions
18
作者 Antai Kang Jiangtao Li +8 位作者 Yubin Li Min Cao Li Qiu Bo Qin Yanze Du Feng Yu Sha Li Ruifeng Li Xiaoliang Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期165-174,共10页
Bimetallic CuCo catalysts with different Cu to Co ratios on N-doped porous carbon materials(N-C)were achieved using impregnation method and applied in the hydrogenation of furfural(FAL)to furfuryl alcohol(FOL).The hig... Bimetallic CuCo catalysts with different Cu to Co ratios on N-doped porous carbon materials(N-C)were achieved using impregnation method and applied in the hydrogenation of furfural(FAL)to furfuryl alcohol(FOL).The high hydrogenation activity of FAL over Cu_(1)Co_(1)/N-C was originated from the synergistic interactions of Cu and Co species,where Co^(0)and Cu^(0)simultaneously adsorb and activate H_(2),and Cu^(+) served as Lewis acid sites to activate C]O.Meanwhile,electrons transfer from Cu to Co promoted the formation of Cu^(+).In situ Fourier transform infrared spectroscopy analysis indicated that Cu_(1)Co_(1)/N-C adsorbed FAL with a tilted η^(1)-(O)configuration.The superior Cu_(1)Co_(1)/N-C showed excellent adsorbed ability towards H_(2) and FAL,but weak adsorption for FOL.Therefore,Cu_(1)Co_(1)/N-C possessed 93.1%FAL conversion and 99.0% FOL selectivity after 5 h reaction,which also exhibited satisfactory reusability in FAL hydrogenation for five cycles. 展开更多
关键词 Electronic interactions FURFURAL Selective hydrogenation Furfuryl alcohol ADSORPTION
下载PDF
Inclusion of CoTiO_(3) to ameliorate the re/dehydrogenation properties of the Mg–Na–Al system
19
作者 N.A.Ali N.Y.Yusnizam +3 位作者 N.A.Sazelee Sami-ullah Rather Haizhen Liu M.Ismail 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1215-1226,共12页
For the first time,the MgH_(2)–NaAlH_(4)(ratio 4:1)destabilized system with CoTiO_(3) addition has been explored.The CoTiO_(3)-doped MgH_(2)–NaAlH_(4) sample begins to dehydrogenate at 130℃,which is declined by 40... For the first time,the MgH_(2)–NaAlH_(4)(ratio 4:1)destabilized system with CoTiO_(3) addition has been explored.The CoTiO_(3)-doped MgH_(2)–NaAlH_(4) sample begins to dehydrogenate at 130℃,which is declined by 40℃ compared to the undoped MgH_(2)–NaAlH_(4).Moreover,the de/rehydrogenation kinetics characteristics of the CoTiO_(3)-doped MgH_(2)–NaAlH_(4) were greatly ameliorated.With the inclusion of CoTiO_(3),the MgH_(2)–NaAlH_(4) composite absorbed 5.2 wt.%H_(2),higher than undoped MgH_(2)–NaAlH_(4).In the context of dehydrogenation,the CoTiO_(3)-doped MgH_(2)–NaAlH_(4) sample desorbed 2.6 wt.%H_(2),almost doubled compared to the amount of hydrogen desorbed from the undoped MgH_(2)–NaAlH_(4) sample.The activation energy obtained by the Kissinger analysis for MgH_(2) decomposition was significantly lower by 35.9 kJ/mol than the undoped MgH_(2)–NaAlH_(4) sample.The reaction mechanism demonstrated that new phases of MgCo and AlTi_(3) were generated in situ during the heating process and are likely to play a substantial catalytic function and be useful in ameliorating the de/rehydrogenation properties of the destabilized MgH_(2)–NaAlH_(4) system with the inclusion of CoTiO_(3). 展开更多
关键词 Destabilize system Magnesium hydride Sodium alanate hydrogen storage Additive.
下载PDF
P-induced electron transfer interaction for enhanced selective hydrogenation rearrangement of furfural to cyclopentanone
20
作者 Weichen Wang Hongke Zhang +4 位作者 Yidan Wang Fangyuan Zhou Zhiyu Xiang Wanbin Zhu Hongliang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期43-51,共9页
Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-... Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-doping bifunctional catalyst(Ni-P/mSiO_(2))that achieved 96.6%yield for the hydrogenation rearrangement of furfural to cyclopentanone at mild conditions(1 MPaH_(2),150°C).The turnover frequency of Ni-P/mSiO_(2)was 411.9 h^(-1),which was 3.2-fold than that of Ni/mSiO_(2)(127.2 h^(-1)).Detailed characterizations and differential charge density calculations revealed that the electron-deficient Niδ+species were generated by the electron transfer from Ni to P,which promoted the ring rearrangement reaction.Density functional theory calculations illustrated that the presence of P atoms endowed furfural tilted adsorb on the Ni surface by the C=O group and facilitated the desorption of cyclopentanone.This work unraveled the connection between the localized electronic structures and the catalytic properties,so as to provide a promising reference for designing advanced catalysts for biomass valorization. 展开更多
关键词 FURFURAL hydrogenation rearrangement P-DOPING Electron transfer Biomass valorization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部