In this study a 10-storied residential building model was employed to clarify the ventilation characteristics of the atrium and the rooms,which were effected by the different forms of lateral openings.The experiment w...In this study a 10-storied residential building model was employed to clarify the ventilation characteristics of the atrium and the rooms,which were effected by the different forms of lateral openings.The experiment was conducted under the combined effect of wind force and thermal buoyancy,and the similarity requirements were satisfied.The results have shown that the different forms of lateral openings cause the different ventilation effect of the building,and also have some certain regularity.The conclusions provide a theoretical foundation for how to use the ventilation of atrium better in high-rise residential building.展开更多
In high-rise buildings with large indoor and outdoor temperature difference,neglecting the effect of stack effect in smoke exhaust shafts may cause calculation error of the fluid network model.In this paper,the mathem...In high-rise buildings with large indoor and outdoor temperature difference,neglecting the effect of stack effect in smoke exhaust shafts may cause calculation error of the fluid network model.In this paper,the mathematical model of kitchen smoke exhaust system considering the influence of stack effect was put forward and it can be inserted different range hood sub-models.Compared with the results of six working conditions of the model without considering the stack effect,the error of the proposed model were reduced by 7.6%,4.3%,4.1%,2.8%,2.4%,and 2.1%.While the indoor and outdoor temperature difference varies from−5℃ to 49℃,the effect of stack effect on the pressure in the flue and the flow rate for each user was studied for six operating rates s.The results show that under the combined effect of stack effect and flue resistance,the static pressure of the kitchen smoke exhaust system showed a low-high-low distribution,and the maximum static pressure in the flue moved toward the bottom with the increase of temperature difference.User flow rates exhibit a low-high-low-high distribution,with an increased flow rate in the bottom users and the largest flow rate in the top users.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the exis...With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.展开更多
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab...To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.展开更多
The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This artic...The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.展开更多
Space cooling is an important building energy end-use that was found in recent years to be significantly impacted by occupant behaviours.However,the majority of previous studies ignored the interplay between the opera...Space cooling is an important building energy end-use that was found in recent years to be significantly impacted by occupant behaviours.However,the majority of previous studies ignored the interplay between the operation of windows and air conditioners(ACs)on cooling load,particularly in building energy modelling.In addition,studies on the analysis of cooling load characteristics regarding high-rise buildings are insufficient.The vertical effect of high-rise buildings on cooling load remains vague.This study thus aims to examine how window and AC operation behaviours impact the cooling load of high-rise buildings in an urban context demonstrated by a real-life typical 40-floor residential building in Hong Kong.This study investigates window and AC operation behaviours jointly and examines the vertical effect on cooling load by using agent-based building energy modelling(BEM)techniques and initiating stochastic and diverse behaviour modes.A carefully designed questionnaire survey was conducted to help build behaviour modes and validate energy models.Ninety building energy models were established integrating meteorological parameters generated by the computational fluid dynamics(CFD)programme for ten typical floors and nine combinations of window and AC behaviour modes.The results show that comfort-based AC modes and schedule-based window modes yielded the lowest cooling load.Considering the combined effect of AC and window uses,the maximum difference in cooling loads could be 26.8%.Behaviour modes and building height induce up to 32.4%differences in cooling loads.Besides,a deviation between the behaviour modes and height on the cooling load was found.The findings will help develop a thorough energy model inferring occupants’window and AC behaviour modes along with the building height in high-rise residential buildings.The findings indicate that the interaction impact of window and AC behaviour modes and height should be jointly considered in future high-rise building energy modelling,building energy standards,and policymaking.展开更多
With the constant advance of global urbanization and aggravation of urban construction land scarcity,high-rise residential buildings have become one of the main carriers of urban residential function on account of bot...With the constant advance of global urbanization and aggravation of urban construction land scarcity,high-rise residential buildings have become one of the main carriers of urban residential function on account of both land saving and large housing requirement.However,relevant studies on consumers' floor selection preference in high-rise residential buildings,regarding what inherent and regular features and causes it has,are still insufficient,despite that related issues have important practical significance for real estate developers and designers' decision making in terms of dwelling size ratio,floor area,indoor layout,and so on.This study,based on systematic examination of existing domestic and international researches,seeks to make empirical tests and generalization on the above issues from the aspect of "utility function"(safety,comfortableness,accessibility and economic efficiency) of the living environment that impacted by different floor levels,and floor selection features regarding consumers' social and family structure attributes,as well as the intrinsic correlation between them.The results show the existence of floor level preference in high-rise residential buildings.Its essence is a personalized characterization of consumers' social and family structures' attributes in selecting the "utility function" of the living environment,as the preference value differs under various attributes including gender,age,income,family members and others.展开更多
In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and ...In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure.展开更多
Cost overrun is a common problem in construction projects worldwide.Most Indian construction projects,particularly those involving high-rise buildings,have had severe cost overruns.For managers,architects,engineers,an...Cost overrun is a common problem in construction projects worldwide.Most Indian construction projects,particularly those involving high-rise buildings,have had severe cost overruns.For managers,architects,engineers,and contractors,completing building projects within the specified cost budget has become the most important and hard assignment.Since it is common for high-rise building projects to go over budget,the aim of this study is to find out the causes of cost overruns and provide effective measures.The study found 70 cost overrun factors based on a comprehensive literature review and expert opinions.A Google form questionnaire was distributed to 150 construction professionals across India.After following up,101 of the 150 responses were received.A five-point Likert scale was used and the acquired data was analyzed and ranked using the Relative Importance Index(RII)technique.According to the findings of RII,the top ten critical factors influencing cost overruns were frequent change orders during construction by the owner,delay in construction,escalation of material prices,market inflation or deflation,rework,frequent changes in design,inaccurate evaluation of the project timeline,unforeseen ground condition,inaccurate quantity take-off,and delay in progressive payment by the owner.Spearman’s rank correlation test revealed that there is a very significant relationship between the rankings of factors provided by the owner,the consultant,and the contractor.In addition,a factor analysis tool in the SPSS software was also used to categorize the seventy factors into sixteen core components.The top ten critical factors were presented to subject matter experts,and their suggestions were being compiled.These results are expected to help construction professionals minimize cost overruns,improve cost control measures,and initiate future research.展开更多
The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and...The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer.展开更多
A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based ...A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8.展开更多
The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrate...The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.展开更多
This article takes traditional residential buildings in Ningxia region as the starting point,and through field research and data analysis,demonstrates the specific elements of the spatial composition of traditional re...This article takes traditional residential buildings in Ningxia region as the starting point,and through field research and data analysis,demonstrates the specific elements of the spatial composition of traditional residential buildings and the common forms of courtyard space.The study summarizes the regional cultural characteristics of traditional residential buildings in the region,laying a foundation for subsequent research and providing some reference basis.展开更多
In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual en...In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual energy consumption and the overall thermal transfer value(OTTV)of a baseline residential building prescribed in the Chinese codes and the HK-BEAM are evaluated and compared by the energy budget approach.The results show that in the Chinese codes,the OTTV of the residential building is lower,but the annual energy consumption and the cooling load are higher than those in the HK-BEAM.The annual energy use difference amounts to 13.4%.All the compliance criteria except the ventilation rate and the equipment power in the Chinese codes are set higher than those in the HK-BEAM.However,the compliance criteria of the ventilation rate and the equipment power,especially the ventilation rate,result in much energy consumption,which ultimately induces a high energy budget for residential buildings.展开更多
Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity ind...Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent control systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the moisture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then,experimental work was carried out to investigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrigerant distribution can control the dehumidification capacity,but the former influences the EER more than the latter,while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion valve.The energy consumption of this kind of unit was estimated and compared with present room air conditioners,which shows that it can save about 41% cooling energy consumption.展开更多
Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond de...Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond design,especially for high-rise buildings.In this study,steel high-rise buildings using either square concrete-filled-tube(CFT) columns or steel tube columns are designed.A detailed three-dimensional(3 D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse.The effectiveness is verified by both component tests and a full-scale shaking table test.The collapse margin,which is defined as the ratio of PGA between the collapse level to the design major earthquake level(Level 2),is quantified by a series of numerical simulations using incremental dynamic analyses(IDA).The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20.The significant variation in the collapse margin was caused by the different characteristics of the input ground motions.The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns,exhibiting only 57% of the collapse margin of the baseline building.The influence of reducing the height of the first story was quite significant.The shortened first story not only enlarged the collapse margin by 20%,but also changed the collapse mode.展开更多
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys...Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.展开更多
The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a ...In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.展开更多
基金Supported by the National Natural Science Foundation of China(50778064)Hunan Natural Science Foundation(07jj6088)
文摘In this study a 10-storied residential building model was employed to clarify the ventilation characteristics of the atrium and the rooms,which were effected by the different forms of lateral openings.The experiment was conducted under the combined effect of wind force and thermal buoyancy,and the similarity requirements were satisfied.The results have shown that the different forms of lateral openings cause the different ventilation effect of the building,and also have some certain regularity.The conclusions provide a theoretical foundation for how to use the ventilation of atrium better in high-rise residential building.
基金supported by National Natural Science Foundation of China (Grant No.52178082)Program for Liaoning Innovative Tal-ents in University (No.SHSCXRC2017003)Shenyang Science and technology planning project (No.21-108-9-03).
文摘In high-rise buildings with large indoor and outdoor temperature difference,neglecting the effect of stack effect in smoke exhaust shafts may cause calculation error of the fluid network model.In this paper,the mathematical model of kitchen smoke exhaust system considering the influence of stack effect was put forward and it can be inserted different range hood sub-models.Compared with the results of six working conditions of the model without considering the stack effect,the error of the proposed model were reduced by 7.6%,4.3%,4.1%,2.8%,2.4%,and 2.1%.While the indoor and outdoor temperature difference varies from−5℃ to 49℃,the effect of stack effect on the pressure in the flue and the flow rate for each user was studied for six operating rates s.The results show that under the combined effect of stack effect and flue resistance,the static pressure of the kitchen smoke exhaust system showed a low-high-low distribution,and the maximum static pressure in the flue moved toward the bottom with the increase of temperature difference.User flow rates exhibit a low-high-low-high distribution,with an increased flow rate in the bottom users and the largest flow rate in the top users.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金the grant fromthe Key Technologies Research and Development Program(Grant No.2021YFF0602005)the National Natural Science Foundation of China(No.51678135)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033).
文摘With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.
基金supported by the Natural Science Foundation of China(52122811)。
文摘To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.
基金supported by grants from the General Research Fund of the Hong Kong Research Grants Council[No.17203219]the Collaborative Research Fund of the Hong Kong Research Grants Council[No.C7047-20GF].
文摘Space cooling is an important building energy end-use that was found in recent years to be significantly impacted by occupant behaviours.However,the majority of previous studies ignored the interplay between the operation of windows and air conditioners(ACs)on cooling load,particularly in building energy modelling.In addition,studies on the analysis of cooling load characteristics regarding high-rise buildings are insufficient.The vertical effect of high-rise buildings on cooling load remains vague.This study thus aims to examine how window and AC operation behaviours impact the cooling load of high-rise buildings in an urban context demonstrated by a real-life typical 40-floor residential building in Hong Kong.This study investigates window and AC operation behaviours jointly and examines the vertical effect on cooling load by using agent-based building energy modelling(BEM)techniques and initiating stochastic and diverse behaviour modes.A carefully designed questionnaire survey was conducted to help build behaviour modes and validate energy models.Ninety building energy models were established integrating meteorological parameters generated by the computational fluid dynamics(CFD)programme for ten typical floors and nine combinations of window and AC behaviour modes.The results show that comfort-based AC modes and schedule-based window modes yielded the lowest cooling load.Considering the combined effect of AC and window uses,the maximum difference in cooling loads could be 26.8%.Behaviour modes and building height induce up to 32.4%differences in cooling loads.Besides,a deviation between the behaviour modes and height on the cooling load was found.The findings will help develop a thorough energy model inferring occupants’window and AC behaviour modes along with the building height in high-rise residential buildings.The findings indicate that the interaction impact of window and AC behaviour modes and height should be jointly considered in future high-rise building energy modelling,building energy standards,and policymaking.
基金supported by National Natural Science Foundation of China(41501173)Postdoctoral Science Foundation of China(2015M571418)Central University Basic Research and Operating Expenses of Special Funding(HIT.NSRIF.201656)
文摘With the constant advance of global urbanization and aggravation of urban construction land scarcity,high-rise residential buildings have become one of the main carriers of urban residential function on account of both land saving and large housing requirement.However,relevant studies on consumers' floor selection preference in high-rise residential buildings,regarding what inherent and regular features and causes it has,are still insufficient,despite that related issues have important practical significance for real estate developers and designers' decision making in terms of dwelling size ratio,floor area,indoor layout,and so on.This study,based on systematic examination of existing domestic and international researches,seeks to make empirical tests and generalization on the above issues from the aspect of "utility function"(safety,comfortableness,accessibility and economic efficiency) of the living environment that impacted by different floor levels,and floor selection features regarding consumers' social and family structure attributes,as well as the intrinsic correlation between them.The results show the existence of floor level preference in high-rise residential buildings.Its essence is a personalized characterization of consumers' social and family structures' attributes in selecting the "utility function" of the living environment,as the preference value differs under various attributes including gender,age,income,family members and others.
文摘In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure.
文摘Cost overrun is a common problem in construction projects worldwide.Most Indian construction projects,particularly those involving high-rise buildings,have had severe cost overruns.For managers,architects,engineers,and contractors,completing building projects within the specified cost budget has become the most important and hard assignment.Since it is common for high-rise building projects to go over budget,the aim of this study is to find out the causes of cost overruns and provide effective measures.The study found 70 cost overrun factors based on a comprehensive literature review and expert opinions.A Google form questionnaire was distributed to 150 construction professionals across India.After following up,101 of the 150 responses were received.A five-point Likert scale was used and the acquired data was analyzed and ranked using the Relative Importance Index(RII)technique.According to the findings of RII,the top ten critical factors influencing cost overruns were frequent change orders during construction by the owner,delay in construction,escalation of material prices,market inflation or deflation,rework,frequent changes in design,inaccurate evaluation of the project timeline,unforeseen ground condition,inaccurate quantity take-off,and delay in progressive payment by the owner.Spearman’s rank correlation test revealed that there is a very significant relationship between the rankings of factors provided by the owner,the consultant,and the contractor.In addition,a factor analysis tool in the SPSS software was also used to categorize the seventy factors into sixteen core components.The top ten critical factors were presented to subject matter experts,and their suggestions were being compiled.These results are expected to help construction professionals minimize cost overruns,improve cost control measures,and initiate future research.
文摘The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer.
文摘A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the EducationDepartment of China (Grant No. 20JHQ095)。
文摘The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.
基金The National Social Science Foundation of the Arts Key Project“Research on the Architecture Art and Folk Culture of Chinese Traditional Houses on the Land“Silk Road”(Number:18AH008)”Project entrusted by the Ministry of Culture and Tourism:“Yellow River Culture and Chinese Civilization:Rescue Research on Shaanxi Traditional Residential Buildings and Residential Folk Culture” (No.21HH02)Shaanxi Province High-level Talents Special Support Program.
文摘This article takes traditional residential buildings in Ningxia region as the starting point,and through field research and data analysis,demonstrates the specific elements of the spatial composition of traditional residential buildings and the common forms of courtyard space.The study summarizes the regional cultural characteristics of traditional residential buildings in the region,laying a foundation for subsequent research and providing some reference basis.
基金The Natural Science Foundation of Tianjin(No.08JCYBJC26800)
文摘In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual energy consumption and the overall thermal transfer value(OTTV)of a baseline residential building prescribed in the Chinese codes and the HK-BEAM are evaluated and compared by the energy budget approach.The results show that in the Chinese codes,the OTTV of the residential building is lower,but the annual energy consumption and the cooling load are higher than those in the HK-BEAM.The annual energy use difference amounts to 13.4%.All the compliance criteria except the ventilation rate and the equipment power in the Chinese codes are set higher than those in the HK-BEAM.However,the compliance criteria of the ventilation rate and the equipment power,especially the ventilation rate,result in much energy consumption,which ultimately induces a high energy budget for residential buildings.
基金Supported by Research Fund of the 11th 5year Sci Tech National Support Project
文摘Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent control systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the moisture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then,experimental work was carried out to investigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrigerant distribution can control the dehumidification capacity,but the former influences the EER more than the latter,while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion valve.The energy consumption of this kind of unit was estimated and compared with present room air conditioners,which shows that it can save about 41% cooling energy consumption.
基金Heilongjiang Province Application Technology Research and Development under Grant No.GX16C007National Key Research and Development Program of China under Grant No.2017YFC1500605
文摘Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design.It is important to investigate the failure mechanism and collapse margin of structures beyond design,especially for high-rise buildings.In this study,steel high-rise buildings using either square concrete-filled-tube(CFT) columns or steel tube columns are designed.A detailed three-dimensional(3 D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse.The effectiveness is verified by both component tests and a full-scale shaking table test.The collapse margin,which is defined as the ratio of PGA between the collapse level to the design major earthquake level(Level 2),is quantified by a series of numerical simulations using incremental dynamic analyses(IDA).The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20.The significant variation in the collapse margin was caused by the different characteristics of the input ground motions.The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns,exhibiting only 57% of the collapse margin of the baseline building.The influence of reducing the height of the first story was quite significant.The shortened first story not only enlarged the collapse margin by 20%,but also changed the collapse mode.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ01A13-2) supported by the National Key Technologies R & D Program of China
文摘Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371,62003029)Beijing Natural Science Foundation(JQ20026)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.