In view of a new idea on initial conditions, an open problem of nonlinear evolution equations with higher order, which was given by J. L. Lions, is solved. Effect of our results is shown on an example.
In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-lin...In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-line from the input and output information of the system. A novel weighted one-step-ahead control criterion function is proposed for the control law. The convergence analysis shows that the proposed control law can guarantee the convergence under the assumption that the desired output is a set point. Simulation examples are provided for nonlinear systems to illustrate the better performance of the higher order learning adaptive control.展开更多
In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness o...In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.展开更多
We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical ...We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.展开更多
This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We der...This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We derive mathematical formulations in matrix form, in detail, by exploiting Bernstein polynomials as basis functions. A reasonable accuracy is found when the proposed method is used on few examples. At the end of the study, a comparison is made between the approximate and exact solutions, and also with the solutions of the existing methods. Our results converge monotonically to the exact solutions. In addition, we show that the derived formulations may be applicable by reducing higher order complicated BVP into a lower order system of BVPs, and the performance of the numerical solutions is satisfactory. .展开更多
In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solutio...In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): , in the case 2): and in the case 3): . At last, we consider that the estimation of the upper bounds of the blow-up time is given for deferent initial energy.展开更多
Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-part...Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-particle interaction in space plasmas. The signals considered here are medium scale electron density irregularities and ELF/ULF electrostatic turbulence. Nonlinearities are mainly observed in the ELF range. They are independently pointed out in time series associated with fluctuations in electronic density and in time series associated with the measurement of one electric field component. Peaks in cross-bicorrelation function and in mutual information clearly show that, in well delimited frequency bands, the wave-particle interactions are nonlinear above a certain level of fluctuations. The way the energy is transferred within the frequencies of density fluctuations is indicated by a bi-spectra analysis.展开更多
We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make a...We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.展开更多
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher...This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.展开更多
On the basis of the standard linear stability analysis and Drude electromagnetic model,the impacts of higher-order dispersions and three kinds of typical saturable nonlinearities on modulation instability(MI) have b...On the basis of the standard linear stability analysis and Drude electromagnetic model,the impacts of higher-order dispersions and three kinds of typical saturable nonlinearities on modulation instability(MI) have been analyzed and calculated for negative-refractive metamaterials(MMs).Our results show that the MI gain spectra consist of only one spectral region instead of one or two regions in ordinary materials,which may be close to or far from the zero point.Particularly,the spectrum far from the zero point has a high cut-off frequency but a narrow spectral width,which is obviously beneficial to the generation of high-repetition-rate pulse trains.Moreover,MI characteristics here will vary with the normalized angular frequency which can be modified by adjusting the structures of negative-refractive MMs,signifying the controllability of bistable solitons and MI based applications.The effects of saturable nonlinearities are similar to those in ordinary materials.展开更多
The initial boundary value problems for a class of high order Kirchhoff type equations with nonlinear strongly damped terms are considered. We establish the existence and uniqueness of the global solution of the probl...The initial boundary value problems for a class of high order Kirchhoff type equations with nonlinear strongly damped terms are considered. We establish the existence and uniqueness of the global solution of the problem by using prior estimates and Galerkin’s method under proper assumptions for the rigid term. Then the compact method is used to prove the existence of a compact family of global attractors in the solution semigroup generated by the problem. Finally, the Frechet differentiability of the operator semigroup and the decay of the volume element of linearization problem are proved, and the Hausdorff dimension and Fractal dimension of the family of global attractors are obtained.展开更多
In this article, the author employs the conical expansion and compression fixed point principle and the fixed point index theory to show that there exist at least two positive solutions for a higher order BVP.
By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical res...By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.展开更多
By using the solutions of an auxiliary Lame equation, a direct algebraic method is proposed to construct the exact solutions of N-coupled nonlinear Schrodinger equations. The abundant higher-order exact periodic solut...By using the solutions of an auxiliary Lame equation, a direct algebraic method is proposed to construct the exact solutions of N-coupled nonlinear Schrodinger equations. The abundant higher-order exact periodic solutions of a family of N-coupled nonlinear Schrodinger equations are explicitly obtained with the aid of symbolic computation and they include corresponding envelope solitary and shock wave solutions.展开更多
We solve the generalized nonlinear Schr6dinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for brig...We solve the generalized nonlinear Schr6dinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.展开更多
In this article, the higher order asymptotic expansions of cumulative distribution function and probability density function of extremes for generalized Maxwell distribution are established under nonlinear normalizati...In this article, the higher order asymptotic expansions of cumulative distribution function and probability density function of extremes for generalized Maxwell distribution are established under nonlinear normalization. As corollaries, the convergence rates of the distribu- tion and density of maximum are obtained under nonlinear normalization.展开更多
This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausd...This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausdorff dimension and Fractal dimension of the global attractor.展开更多
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simp...A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.展开更多
The asymptotic behavior of a class of nonlinear delay difference equation wax studied . Some sufficient conditions are obtained for permanence and global attractivity . The results can be applied to a claxs of nonline...The asymptotic behavior of a class of nonlinear delay difference equation wax studied . Some sufficient conditions are obtained for permanence and global attractivity . The results can be applied to a claxs of nonlinear delay difference equations and to the delay discrete Logistic model and some known results are included.展开更多
基金supported by TWAS,UNESO and AMSS in Chinese AcademyThe research of the third author is partially supported by NSFC(11001239)
文摘In view of a new idea on initial conditions, an open problem of nonlinear evolution equations with higher order, which was given by J. L. Lions, is solved. Effect of our results is shown on an example.
基金This work was supported by National Natural Science Foundation of China (No .60474038)
文摘In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-line from the input and output information of the system. A novel weighted one-step-ahead control criterion function is proposed for the control law. The convergence analysis shows that the proposed control law can guarantee the convergence under the assumption that the desired output is a set point. Simulation examples are provided for nonlinear systems to illustrate the better performance of the higher order learning adaptive control.
文摘In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Program for Innovative Research Team of Young Teachers of Zhejiang Agricultural and Forestry University, China (Grant No. 2009RC01)
文摘We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.
文摘This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We derive mathematical formulations in matrix form, in detail, by exploiting Bernstein polynomials as basis functions. A reasonable accuracy is found when the proposed method is used on few examples. At the end of the study, a comparison is made between the approximate and exact solutions, and also with the solutions of the existing methods. Our results converge monotonically to the exact solutions. In addition, we show that the derived formulations may be applicable by reducing higher order complicated BVP into a lower order system of BVPs, and the performance of the numerical solutions is satisfactory. .
文摘In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): , in the case 2): and in the case 3): . At last, we consider that the estimation of the upper bounds of the blow-up time is given for deferent initial energy.
文摘Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-particle interaction in space plasmas. The signals considered here are medium scale electron density irregularities and ELF/ULF electrostatic turbulence. Nonlinearities are mainly observed in the ELF range. They are independently pointed out in time series associated with fluctuations in electronic density and in time series associated with the measurement of one electric field component. Peaks in cross-bicorrelation function and in mutual information clearly show that, in well delimited frequency bands, the wave-particle interactions are nonlinear above a certain level of fluctuations. The way the energy is transferred within the frequencies of density fluctuations is indicated by a bi-spectra analysis.
文摘We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.
文摘This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.
基金Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 210186)the Scientific Research Foundation of Chengdu University of Information Technology,China (Grant Nos. 2010d1 and J201117)
文摘On the basis of the standard linear stability analysis and Drude electromagnetic model,the impacts of higher-order dispersions and three kinds of typical saturable nonlinearities on modulation instability(MI) have been analyzed and calculated for negative-refractive metamaterials(MMs).Our results show that the MI gain spectra consist of only one spectral region instead of one or two regions in ordinary materials,which may be close to or far from the zero point.Particularly,the spectrum far from the zero point has a high cut-off frequency but a narrow spectral width,which is obviously beneficial to the generation of high-repetition-rate pulse trains.Moreover,MI characteristics here will vary with the normalized angular frequency which can be modified by adjusting the structures of negative-refractive MMs,signifying the controllability of bistable solitons and MI based applications.The effects of saturable nonlinearities are similar to those in ordinary materials.
文摘The initial boundary value problems for a class of high order Kirchhoff type equations with nonlinear strongly damped terms are considered. We establish the existence and uniqueness of the global solution of the problem by using prior estimates and Galerkin’s method under proper assumptions for the rigid term. Then the compact method is used to prove the existence of a compact family of global attractors in the solution semigroup generated by the problem. Finally, the Frechet differentiability of the operator semigroup and the decay of the volume element of linearization problem are proved, and the Hausdorff dimension and Fractal dimension of the family of global attractors are obtained.
基金the National Natural Science Foundation of China (No.19671052) and Postdoctorate Foundation of Zhengzhou Uniyersity.
文摘In this article, the author employs the conical expansion and compression fixed point principle and the fixed point index theory to show that there exist at least two positive solutions for a higher order BVP.
基金Project supported by the National Science Foundation of Guangdong Province,China(Grant No04010397)
文摘By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006).
文摘By using the solutions of an auxiliary Lame equation, a direct algebraic method is proposed to construct the exact solutions of N-coupled nonlinear Schrodinger equations. The abundant higher-order exact periodic solutions of a family of N-coupled nonlinear Schrodinger equations are explicitly obtained with the aid of symbolic computation and they include corresponding envelope solitary and shock wave solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10375022) and the Education Department of Hunan Province (Grant No 05C414).
文摘We solve the generalized nonlinear Schr6dinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.
基金Supported by the Natural Science Foundation of China(61673015,61273020)the Fundamental Research Funds for the Central Universities(XDJK2015A007,SWU1809002)+3 种基金the Science Computing and Intelligent Information Processing of Guangxi Higher Education Key Laboratory(GXSCIIP201702)the Science and Technology Plan Project of Guizhou Province(LH[2015]7053,LH[2015]7055)Science and Technology Foundation of Guizhou Province(Qian Ke He Ji Chu[2016]1161)Guizhou Province Natural Science Foundation in China(Qian Jiao He KY[2016]255)
文摘In this article, the higher order asymptotic expansions of cumulative distribution function and probability density function of extremes for generalized Maxwell distribution are established under nonlinear normalization. As corollaries, the convergence rates of the distribu- tion and density of maximum are obtained under nonlinear normalization.
文摘This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausdorff dimension and Fractal dimension of the global attractor.
文摘A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
基金Foundation items: the National Natural Science Foundation of China (10171040)the Natural Science Foundation of Gansu Province of China (ZS011-A25-007-Z)+1 种基金 the Foundation for University Key Teacher by Ministry of Education of China the Teaching and Re
文摘The asymptotic behavior of a class of nonlinear delay difference equation wax studied . Some sufficient conditions are obtained for permanence and global attractivity . The results can be applied to a claxs of nonlinear delay difference equations and to the delay discrete Logistic model and some known results are included.