In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function...In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function in second sense is introduced and then a new Herrnite-Hadarnard inequality is derived for the class of logarithmically s-Godunova-Levin-preinvex function.展开更多
Some new inequalities of Hermite-Hadamard's integration are established. As for as inequalities about the righthand side of the classical Hermite-Hadamard's integral inequality refined by S Qaisar in [3], a ne...Some new inequalities of Hermite-Hadamard's integration are established. As for as inequalities about the righthand side of the classical Hermite-Hadamard's integral inequality refined by S Qaisar in [3], a new upper bound is given. Under special conditions,the bound is smaller than that in [3].展开更多
基金The Key Scientific and Technological Innovation Team Project(2014KCT-15)in Shaanxi Province
文摘In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function in second sense is introduced and then a new Herrnite-Hadarnard inequality is derived for the class of logarithmically s-Godunova-Levin-preinvex function.
基金Supported by the Key Scientific and Technological Innovation Team Project in Shaanxi Province(2014KCT-15)
文摘Some new inequalities of Hermite-Hadamard's integration are established. As for as inequalities about the righthand side of the classical Hermite-Hadamard's integral inequality refined by S Qaisar in [3], a new upper bound is given. Under special conditions,the bound is smaller than that in [3].