期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
Hyperbranched polymer hollow-fiber-composite membranes for pervaporation separation of aromatic/aliphatic hydrocarbon mixtures 被引量:1
1
作者 Tong Liu Hao Sun +5 位作者 Xiangqiong Wang Jie Li Zhanquan Zhang Pei Wu Naixin Wang Quanfu An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期13-22,共10页
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me... The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. 展开更多
关键词 Aromatic/aliphatic hydrocarbons Hyperbranched polymer PERVAPORATION Hollow fiber membrane DIP-COATING
下载PDF
Four-channel catalytic micro-reactor based on alumina hollow fiber membrane for efficient catalytic oxidation of CO
2
作者 Baichuan Xu Bin Wang Tao Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期140-147,共8页
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou... The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future. 展开更多
关键词 Catalytic converter Precious metal catalyst Phase inversion method Hollow fiber membrane CO oxidation
下载PDF
APPLICATION AND INFLUENCE OF HOLLOW OPTICAL FIBER EMBEDDED IN FIBER GLASS/EPOXY COMPOSITE MATERIALS
3
作者 杨红 梁大开 +1 位作者 陶宝祺 邱浩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期130-134,共5页
The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical ... The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given. 展开更多
关键词 optical fiber self diagnosis self repair smart structures hollow optical fiber
下载PDF
Research of Oxidation Resistance of PVDF Hollow Fiber Membrane Used in Water Treatment
4
作者 曾令强 王志强 陈文清 《Agricultural Science & Technology》 CAS 2010年第9期17-21,共5页
[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make castin... [Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance. 展开更多
关键词 Water treatment Hollow fiber membrane Oxidation resistance
下载PDF
Performances of biological aerated filter employing hollow fiber membrane segments of surface-improved poly(sulfone) as biofilm carriers 被引量:9
5
作者 SHEN Ying-jie WU Guang-xia +5 位作者 FAN Yao-bo ZHONG Hui WU Lin-lin ZHANG Shao-lai ZHAO Xian-hong ZHANG Wei-jun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第7期811-817,共7页
Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wett... Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carder and the other employed unmodified membrane segment as biofilm carder. The experimental results showed that under the conditions of influent flux 5 L/h, hydraulic retention time 9 h and gas to liquid ratio (G/L) 10: 1, the removal rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4^+-N) for the modified packing filter and the unmodified packing filter was averaged at 83.64% and 96.25%, respectively, with the former filter being 5%-20% more than the latter. The effluent concentration of COD, NH4^+-N and turbidity for the modified packing filter was 25.25 mg/L, 2 mg/L and 8 NTU, respectively. Moreover, the ammonium nitrogen removal performance of the filter packing the modified PSF was compared with the other bioreactor packing of an efficient floating medium. The biomass test indicated that the modified membrane matrixes provided better specific adhesion (3310-5653 mg TSS/L support), which gave a mean of 1000 mg TSS/L more than the unmodified membrane did. In addition, the phenomenon of simultaneous denitrification on the inner surface of the support and nitrification on the outer surface was found in this work. 展开更多
关键词 surface modification UV-photoinduced grafting polymerization NITRIFICATION DENITRIFICATION hollow fiber membrane biofilm attachment
下载PDF
Effect of Diluent on the Morphology and Performance of IPP Hollow Fiber Microporous Membrane via Thermally Induced Phase Separation 被引量:7
6
作者 杨振生 李凭力 +1 位作者 常贺英 王世昌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期394-397,共4页
Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent... Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent. 展开更多
关键词 thermally induced phase separation hollow fiber isotactic polypropylene MEMBRANE MORPHOLOGY
下载PDF
Effects of F127 on Properties of PVB/F127 Blend Hollow Fiber Membrane via Thermally Induced Phase Separation 被引量:5
7
作者 邱运仁 松山秀人 +2 位作者 钟宏 叶红齐 黄可龙 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期207-216,共10页
Hydrophilic poly(vinyl butyral)(PVB) /Pluronic F127(F127) blend hollow fiber membranes were prepared via thermally induced phase separation(TIPS) ,and the effects of blend composition on the performance of hydrophilic... Hydrophilic poly(vinyl butyral)(PVB) /Pluronic F127(F127) blend hollow fiber membranes were prepared via thermally induced phase separation(TIPS) ,and the effects of blend composition on the performance of hydrophilic PVB/F127 blend hollow fiber membrane were investigated.The addition of F127 to PVB/polyethylene glycol(PEG) system decreases the cloud point temperature,while the cloud point temperature increases slightly with the addition of F127 to 20%(by mass) PVB/F127/PEG200 system when the concentration of F127 is not higher than 5%(by mass) .Light scattering results show that the initial inter-phase periodic distance formed from the phase separation of 20%(by mass) PVB/F127/PEG200 system decreases with the addition of F127,so does the growth rate during cooling process.The blend hollow fiber membrane prepared at air-gap 5mm,of which the water permeability increases and the rejection changes little with the increase of F127 concentration.For the membrane prepared at zero air-gap,both water permeability and rejection of the PVB/F127 blend membrane are greater than those of PVB membrane,while the tensile strength changes little.Elementary analysis shows that most F127 in the polymer solution can firmly exist in the polymer matrix,increasing the hydrophilicity of the blend membrane prepared at air-gap of 5mm. 展开更多
关键词 thermally induced phase separation hollow fiber membrane blend membrane poly(vinyl butyral) Pluronic F127
下载PDF
Structure and Properties of Polyurethane/Polyvinylidene Difluoride Blending Hollow Fiber 被引量:8
8
作者 胡晓宇 肖长发 +1 位作者 安树林 王照旭 《Journal of Donghua University(English Edition)》 EI CAS 2006年第5期76-79,共4页
Utilization of polyvinylidene difluoride, PVDF, as the disperse phase and thermal plastic polyurethane, PU, as the continuous phase, the PU/PVDF blend hollow fiber membranes with the property of pressure-responsibilit... Utilization of polyvinylidene difluoride, PVDF, as the disperse phase and thermal plastic polyurethane, PU, as the continuous phase, the PU/PVDF blend hollow fiber membranes with the property of pressure-responsibility, PR, was prepared by melt.spinning. For these hollow fibers, the formation of the interracial micro-voids, IFM, and the spinablllty of the blend were analyzed. The pressm-e-responslblllty was studied by measuring the changing of pure water flux, PWF, with the pressure, and the influence of drawing and heat-setting on the structure and pressure-responsibility of the membranes were also discussed. 展开更多
关键词 PU/PVDF blend hollow fiber membrane inter facial micro-void pressure-responsibility.
下载PDF
Modeling investigation of geometric size effect on pervaporation dehydration through scaled-up hollow fiber NaA zeolite membranes 被引量:4
9
作者 Jiacheng Wang Peng Ye +2 位作者 Xuechao Gao Yuting Zhang Xuehong Gu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第7期1477-1484,共8页
A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow ... A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow fiber supported NaA zeolite membrane. It was found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane, which could not he neglected. The effect of geometric size on pervaporation dehydration could be more significant under higher vacuum pressure in the permeate side. The transfer resistance in the lumen increases with the hollow fiber length but decreases with lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of d1/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa. 展开更多
关键词 PERVAPORATION NaA zeolite membrane Hollow fiber Lumen pressure drop Geometric parameters
下载PDF
Evaluation of diffusion in gel entrapment cell culture within hollow fibers 被引量:4
10
作者 Dan-QingWu Guo-LiangZhang +3 位作者 ChongShen QianZhao HuiLi QinMeng 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第11期1599-1604,共6页
AIM: To investigate diffusion in mammalian cell culture by gel entrapment within hollow fibers. METHODS: Freshly isolated rat hepatocytes or human oral epidermoid carcinoma (KB) cells were entrapped in type I collagen... AIM: To investigate diffusion in mammalian cell culture by gel entrapment within hollow fibers. METHODS: Freshly isolated rat hepatocytes or human oral epidermoid carcinoma (KB) cells were entrapped in type I collagen solutions and statically cultured inside microporous and ultrafiltration hollow fibers. During the culture time collagen gel contraction, cell viability and specific function were assessed. Effective diffusion coefficients of glucose in cell-matrix gels were determined by lag time analysis in a diffusion cell. RESULTS: Significant gel contractions occurred in the collagen gels by entrapment of either viable hepatocytes or KB cells. And the gel contraction caused a significant reduction on effective diffusion coefficient of glucose. The cell viability assay of both hepatocytes and KB cells statically cultured in hollow fibers by collagen entrapment further confirmed the existence of the inhibited mass transfer by diffusion. Urea was secreted about 50% more by hepatocytes entrapped in hollow fibers with pore size of 0.1 μm than that in hollow fibers with MWCO of 100 ku. CONCLUSION: Cell-matrix gel and membrane pore size are the two factors relevant to the limited mass transfer by diffusion in such gel entrapment of mammalian cell culture. 展开更多
关键词 Hollow fiber Mammalian cell culture Collagen gel entrapment DIFFUSION
下载PDF
Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water 被引量:3
11
作者 Guozhen Liu Yanan Guo +3 位作者 Baochun Meng Zhenggang Wang Gongping Liu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期260-266,共7页
Two-dimensional material membranes with fast transport channels and versatile chemical functionality are promising for molecular separation.Herein,for the first time,we reported design and engineering of two-dimension... Two-dimensional material membranes with fast transport channels and versatile chemical functionality are promising for molecular separation.Herein,for the first time,we reported design and engineering of two-dimensional Ti_(3)C_(2)Tx MXene(called transition metal carbides and nitrides)membranes supported on asymmetric polymeric hollow fiber substrate for water desalination.The membrane morphology,physicochemical properties and ions exclusion performance were systematically investigated.The results demonstrated that surface hydrophilicity and electrostatic repulsion and size sieving effect of interlayer channels synergistically endowed the MXene hollow fiber membrane with fast water permeation and efficient rejection of divalent ions during nanofiltration process. 展开更多
关键词 Two-dimensional material MXene membranes Hollow fiber DESALINATION NANOFILTRATION
下载PDF
CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization 被引量:4
12
作者 Eun-Sung Jo Xinghai An +3 位作者 Pravin G.Ingole Won-Kil Choi Yeong-Sung Park Hyung-Keun Lee 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第3期278-287,共10页
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve... Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups. 展开更多
关键词 Thin-film composite hollow fiber membrane Interfacial polymerization CHMA/TMC CO2/CH4 separation
下载PDF
Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization 被引量:3
13
作者 Zhengchi Yin Xiaoke Wu +5 位作者 Yanwei Yang Huayu Zhang Wangtao Li Ruimin Zhu Qiancheng Zheng Zhengbao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期101-110,共10页
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra... Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports. 展开更多
关键词 Dual-layer PES hollow fiber In-situ crystallization ZIF-8 membrane Gas separation ZNO
下载PDF
STRUCTURE AND PROPERTIES OF COMPOSITE POLYURETHANE HOLLOW FIBER MEMBRANES 被引量:3
14
作者 Xian-fengLi Chang-faXiao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第2期203-210,共8页
Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure wa... Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure(PWF-TP)for the first time.The origin for this phenomenon was analyzed on the basis of membranestructure and material characteristics.The effects of SiO_2 content on the structure and properties of membrane wereinvestigated.The experimental results indicated that SiO_2 in membrane created a great many interfacial micro-voids andplayed an important role in pressure-responsibility,PWF and rejection of membrane:with the increase of SiO_2 content,theability of membrane recovery weakened,PWF increased,and rejection decreased slightly. 展开更多
关键词 POLYURETHANE Silicon dioxide Composite hollow fiber membrane Pressure-responsibility.
下载PDF
Recovery of Copper Ions from Wastewater by Hollow Fiber Supported Emulsion Liquid Membrane 被引量:3
15
作者 郑辉东 陈晶晶 +1 位作者 王碧玉 赵素英 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第8期827-834,共8页
Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effect... Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency. 展开更多
关键词 copper ion supported emulsion liquid membrane extraction rate hollow fiber
下载PDF
Effects of Additives and Coagulant Temperature on Fabrication of High Performance PVDF/Pluronic F127 Blend Hollow Fiber Membranes via Nonsolvent Induced Phase Separation 被引量:3
16
作者 Chun Heng Loh Rong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第1期71-79,共9页
Poly(vinylidene fluoride) (PVDF) has become one of the most popular materials for membrane preparation via nonsolvent induced phase separation (NIPS) process. In this study, an amphiphilic block copolymer, Pluro... Poly(vinylidene fluoride) (PVDF) has become one of the most popular materials for membrane preparation via nonsolvent induced phase separation (NIPS) process. In this study, an amphiphilic block copolymer, Pluronic F127, has been used as both a pore-former and a surface-modifier in the fabrication of PVDF hollow fibermembranes to enhance the membrane permeability and hydrophilicity. The effects of 2nd additive and coagulant temperature on the formation of PVDF/Pluronic F 127 membranes have also been investigated. The as-spun hollow fibers were characterized in terms of cross-sectional morphology, pure water permeation (PWP), relative molecular mass cut-off (MWCO), membrane chemistry, and hydrolphilicity. It was obsered that the addition of Pluronic F 127 significantly increased the PWP of as-spun fibers, while the membrane contact angle was reduced. However, the size of macrovoids in the membranes was undesirably large. The addition of a 2nd additive, including lithium chloride (LiC1) and water, or an increase in coagulant temperature was found to effectively suppress the macrovoid for- mation in the Pluronic-containing membranes. In addition, the use of LiC1 as a 2nd additive also further enhanced the PWP and hydrophilicity of the membranes, while the surface pore size became smaller. PVDF hollow fiber with a PWP as high as 2330 L·m-2·h-1·MPa-1, a MWCO of 53000 and'a contact angle of 71 o was successfully fabricated with 3% (by mass) of Pluronic F127 and 3% (by mass) of LiC1 at a coagulant temperature of 25 ℃, which shows better performance as compared with most of PVDF hollow fiber membranes made by NIPS method. 展开更多
关键词 amphiphilic block copolymer pore forming surface modifying additive poly(vinylidene fluoride) hollow fiber membrane
下载PDF
Synergistic action of non-solvent induced phase separation in preparation of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation 被引量:3
17
作者 邱运仁 漆静 韦玉清 《Journal of Central South University》 SCIE EI CAS 2014年第6期2184-2190,共7页
A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hol... A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed,which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation(NIPS),because of the synergistic action of non-solvent induced phase separation at air gap zero.The pore size gradually decreases from outer surface layer to the intermediate layer,but increases gradually from intermediate layer to the inner surface layer.With the increase of air gap distance,the pore size near the outer surface gets smaller and a dense skin layer is formed,and the pore size gradually increases from the outer surface layer to the inner surface layer.Water permeability of the hollow fiber membrane decreases with air gap distance,the water permeability decreases sharply from 45.50×10-7 to 4.52×10-7 m3/(m2·s·kPa)as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s,further decreases from 4.52×10-7 to 1.00×10-8 m3/(m2·s·kPa)as the air gap increases from 10 to 40 mm.Both the breaking strength and the elongation increase with the increase of air gap distance.The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s. 展开更多
关键词 thermally induced phase separation hollow fiber membranes synergistic action hydrophilic membrane
下载PDF
Hierarchically electrospun nanofibers and their applications:A review 被引量:4
18
作者 Muhammad Badmus Jing Liu +2 位作者 NüWang Norbert Radacsi Yong Zhao 《Nano Materials Science》 CAS CSCD 2021年第3期213-232,共20页
Electrospinning is a popular method for generating long and continuous nanofibers due to its simplicity and versatility.However,conventional electrospun products have weak strength and low availability,which restrict ... Electrospinning is a popular method for generating long and continuous nanofibers due to its simplicity and versatility.However,conventional electrospun products have weak strength and low availability,which restrict their functionality in complex applications.Hierarchical morphology introduces additional and distinctive structural layers onto electrospun fibers.This requires either an extra fabrication step or controlling electrospinning parameters to achieve the desired morphology.Hierarchical morphology can improve the properties of electrospun nanofibers while also mitigating the undesired characteristics.This review discusses the primary and secondary hierarchical structures of electrospun nanomaterials.Hierarchical structures were found to enhance the functionality of nanomaterials and improve pore connectivity and surface areas of electrospun nanofibers.A further advantage is the ability to impart multiple functionalities on nanostructures.With a better understanding of some of the dominant hierarchical structures,nanomaterials applications in drug delivery,tissue engineering,catalysis,and energy devices industries can be improved. 展开更多
关键词 Hierarchical structures Electrospun nanofibers Hollow fibers Core-shell fibers
下载PDF
PDMS/ZIF-8 coating polymeric hollow fiber substrate for alcohol permselective pervaporation membranes 被引量:2
19
作者 Jie Li Ying Labreche +2 位作者 Naixin Wang Shulan Ji Quanfu An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2376-2382,共7页
In order to develop high performance composite membranes for alcohol permselective pervaporation(PV),poly(dimethylsiloxane)/ZIF-8(PDMS/ZIF-8)coated polymeric hollow fiber membranes were studied in this research.First,... In order to develop high performance composite membranes for alcohol permselective pervaporation(PV),poly(dimethylsiloxane)/ZIF-8(PDMS/ZIF-8)coated polymeric hollow fiber membranes were studied in this research.First,PDMS was used for the active layer,and Torlon?,PVDF,Ultem?,and Matrimid?with different porosity were used as support layer for fabrication of hollow fiber composite membranes.The performance of the membranes varied with different hollow fiber substrates was investigated.Pure gas permeance of the hollow fiber was tested to investigate the pore size of all fibers.The effect of support layer on the mass transfer in hydrophobic PV composite membrane was investigated.The results show that proper porosity and pore diameter of the support are demanded to minimize the Knudsen effect.Based on the result,ZIF-8 was introduced to prepare more selective separation layer,in order to improve the PV performance.The PDMS/ZIF-8/Torlon?membrane had a separation factor of 8.9 and a total flux of 847 g·m-2·h-1.This hollow fiber PDMS/ZIF-8/Torlon?composite membrane has a great potential in the industrial application. 展开更多
关键词 PERVAPORATION Hollow fiber PDMS/ZIF-8 Torlon■ PVDF Ultem■ Matrimid■
下载PDF
Efficient methane electrocatalytic conversion over a Ni-based hollow fiber electrode 被引量:2
20
作者 Zhikai Guo Wei Chen +4 位作者 Yanfang Song Xiao Dong Guihua Li Wei Wei Yuhan Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第7期1067-1072,共6页
Natural gas and shale gas,with methane as the main component,are important and clean fossil energy resources.Direct catalytic conversion of methane to valuable chemicals is considered a crown jewel topic in catalysis.... Natural gas and shale gas,with methane as the main component,are important and clean fossil energy resources.Direct catalytic conversion of methane to valuable chemicals is considered a crown jewel topic in catalysis.Substantial studies on processes including methane reforming,oxidative coupling of methane,non-oxidative coupling of methane,etc.have been conducted for many years.However,owing to the intrinsic chemical inertness of CH4,harsh reaction conditions involving either extremely high temperatures or highly oxidative reactants are required to activate the C–H bonds of CH4 in such thermocatalytic processes,which may cause the target products,such as ethylene or methanol,to be further converted into coke or CO and CO2.It is desirable to adopt a new strategy for direct CH4 conversion under mild conditions.Herein,we report that efficient electrocatalytic oxidation of methane to alcohols at ambient temperature and pressure can be achieved using a NiO/Ni hollow fiber electrode.This work opens a new avenue for direct catalytic conversion of CH4. 展开更多
关键词 METHANE Electrocatalytic conversion NICKEL Nickel oxide Hollow fiber
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部