In recent years,humanized immune system(HIS)mice have been gradually used as models for preclinical research in pharmacotherapies and cell therapies with major breakthroughs in tumor and other fields,better mimicking ...In recent years,humanized immune system(HIS)mice have been gradually used as models for preclinical research in pharmacotherapies and cell therapies with major breakthroughs in tumor and other fields,better mimicking the human immune system and the tumor immune microenvironment,compared to traditional immunodeficient mice.To better promote the application of HIS mice in preclinical research,we se-lectively summarize the current prevalent and breakthrough research and evaluation of chimeric antigen receptor(CAR)-T cells in various antiviral and antitumor treat-ments.By exploring its application in preclinical research,we find that it can better reflect the actual clinical patient condition,with the advantages of providing high-efficiency detection indicators,even for progressive research and development.We believe that it has better clinical patient simulation and promotion for the updated design of CAR-T cell therapy than directly transplanted immunodeficient mice.The characteristics of the main models are proposed to improve the use defects of the existing models by reducing the limitation of antihost reaction,combining multiple models,and unifying sources and organoid substitution.Strategy study of relapse and toxicity after CAR-T treatment also provides more possibilities for application and development.展开更多
Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare ...Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare efficacy based on in vitro level was evaluated by detecting the inhibition rate of elastase,the inhibition rate of collagenase,the protein content of type I collagen in human fibroblasts,the inhibition of reactive oxygen species(ROS)with human keratinocytes,and the effects of the recombinant humanized collagen on the expression of hyaluronic acid(HA),filaggrin(FLG)and transglutaminase 1(TGM1)in keratinocytes.The results showed that recombinant humanized collagen was able to maintain stability at temperatures below 70℃.With regard to its skincare efficacy,recombinant humanized collagen could inhibit elastase and collagenase activities and promote the increase of type I collagen content in human fibroblasts.It also showed good inhibition of ROS in keratinocytes in vitro and could increase the expression of HA,FLG,and TGM1 in keratinocytes.In short,the recombinant humanized collagen exhibited a favourable skin care effect in vitro level.This study proved that it has potential firming,anti-wrinkle,moisturizing,and repairing efficacy,and is a valuable cosmetic raw material.展开更多
Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encodi...Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.展开更多
BACKGROUND With advancements in the diagnosis and treatment of lung diseases,lung segment surgery has become increasingly common.Postoperative rehabilitation is critical for patient recovery,yet challenges such as com...BACKGROUND With advancements in the diagnosis and treatment of lung diseases,lung segment surgery has become increasingly common.Postoperative rehabilitation is critical for patient recovery,yet challenges such as complications and adverse outcomes persist.Incorporating humanized nursing modes and novel treatments like nitric oxide inhalation may enhance recovery and reduce postoperative complications.AIM To evaluate the effects of a humanized nursing mode combined with nitric oxide inhalation on the rehabilitation outcomes of patients undergoing lung surgery,focusing on pulmonary function,recovery speed,and overall treatment costs.METHODS A total of 79 patients who underwent lung surgery at a tertiary hospital from March 2021 to December 2021 were divided into a control group(n=39)receiving a routine nursing program and an experimental group(n=40)receiving additional humanized nursing interventions and atomized inhalation of nitric oxide.Key indicators were compared between the two groups alongside an analysis of treatment costs.RESULTS The experimental group demonstrated significant improvements in pulmonary function,reduced average recovery time,and lower total treatment costs compared to the control group.Moreover,the quality of life in the experimental group was significantly better in the 3 months post-surgery,indicating a more effective rehabilitation process.CONCLUSION The combination of humanized nursing mode and nitric oxide inhalation in postoperative care for lung surgery patients significantly enhances pulmonary rehabilitation outcomes,accelerates recovery,and reduces economic burden.This approach offers a promising reference for improving patient care and rehabilitation efficiency following lung surgery.展开更多
Objective:To explore the application effect of humanized nursing management in pediatric rehabilitation wards.Methods:82 pediatric patients admitted to our hospital between January 2023 and January 2024 were randomly ...Objective:To explore the application effect of humanized nursing management in pediatric rehabilitation wards.Methods:82 pediatric patients admitted to our hospital between January 2023 and January 2024 were randomly divided into a control group and an observation group.Among them,the control group was given routine care,while the observation group received humanized nursing management,and the clinical nursing effects and situations of the two groups of children were compared and analyzed.Results:After nursing,the observation group showed significantly better performance in intelligent Developmental Quotient(DQ)values(P<0.05).The clinical nursing satisfaction of the observation group was significantly better than that of the control group(χ^(2)=11.710,P<0.05).Conclusion:Humanized nursing management for patients in pediatric rehabilitation wards not only improves their recovery but also significantly enhances parental satisfaction,which is worth learning from and promoting in clinical settings.展开更多
Objective:To analyze the effect of implementing humanized nursing service intervention for severe patients in the intensive care unit(ICU).Methods:A hundred severely ill ICU patients who were treated from January 2021...Objective:To analyze the effect of implementing humanized nursing service intervention for severe patients in the intensive care unit(ICU).Methods:A hundred severely ill ICU patients who were treated from January 2021 to December 2022 were selected and grouped into a control group and an observation group.The control group adopted routine nursing services and the observation group adopted humanized nursing services.The nursing outcome of the two groups was analyzed.Results:The nursing risk incidence of the observation group was lower than that of the control group(P<0.05).The scale of comfort and nursing satisfaction in the observation group was higher than those in the control group(P<0.05).Conclusion:The implementation of a humanized care service for ICU patients lowered nursing risk incidences and increased the physical comfort and nursing satisfaction of these patients.展开更多
Objective:To implement humanized quality care in critical respiratory failure nursing,observe the effect,and analyze the satisfaction.Methods:80 patients with severe respiratory failure were divided into 40 cases per ...Objective:To implement humanized quality care in critical respiratory failure nursing,observe the effect,and analyze the satisfaction.Methods:80 patients with severe respiratory failure were divided into 40 cases per group(admitted from February 2022 to December 2023)by double-blind method,the control group performed routine care,and the observation group was given humanized quality care.Results:After the nursing care,two respiratory function indexes of the observation group were lower than those of the control group,and two pulmonary function indexes were higher than those of the control group(P<0.05);regarding the complication situation,the incidence rate of the observation group was lower(P<0.05);regarding the nursing care satisfaction situation,the observation group had a higher level of total satisfaction(P<0.05).Conclusion:The application of a humanized quality nursing intervention model in the care of critical respiratory failure can actively improve patients’respiratory status and lung function,reduce complications,and satisfy patients.展开更多
Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata...Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata et al.,2023).Mitochondrial dysfunction,characterized by an imbalance in ATP levels and excessive production of mitochondrial reactive oxygen species,is a key factor that impedes neural regeneration in neurodegenerative diseases and after neuronal injury(Han et al.,2016,2020;Zheng et al.,2016;Zong et al.,2024).展开更多
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo...Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.展开更多
Introduction to human endogenous retrovirus type-W(HERV-W): Genomic inheritance from the past includes retroviral sequences that have been stably incorporated into our genomes and account for up to 8% of human DNA.
Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocyt...Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
Acetyltransferases,required to transfer an acetyl group on protein are highly conserved proteins that play a crucial role in development and disease.Protein acetylation is a common post-translational modification pivo...Acetyltransferases,required to transfer an acetyl group on protein are highly conserved proteins that play a crucial role in development and disease.Protein acetylation is a common post-translational modification pivotal to basic cellular processes.Close to 80%-90%of proteins are acetylated during translation,which is an irreversible process that affects protein structure,function,life,and localization.In this review,we have discussed the various N-acetyltransferases present in humans,their function,and how they might play a role in diseases.Furthermore,we have focused on N-acetyltransferase 9 and its role in microtubule stability.We have shed light on how N-acetyltransferase 9 and acetylation of proteins can potentially play a role in neurodegenerative diseases.We have specifically discussed the N-acetyltransferase 9-acetylation independent function and regulation of c-Jun N-terminal kinase signaling and microtubule stability during development and neurodegeneration.展开更多
Landscape plants play a role of decorating and beautifying the indoor environment.From the perspective of humanization,the functions and application patterns of landscape plants in the interior environmental design ar...Landscape plants play a role of decorating and beautifying the indoor environment.From the perspective of humanization,the functions and application patterns of landscape plants in the interior environmental design are analyzed in this study,and finally the application rules of landscape plants in the humanized interior environmental design are summarized.展开更多
Background:There are remarkable genetic differences between animal major histocompatibility complex(MHC)systems and the human leukocyte antigen(HLA)system.HLA transgenic humanized mouse model systems offer a much bett...Background:There are remarkable genetic differences between animal major histocompatibility complex(MHC)systems and the human leukocyte antigen(HLA)system.HLA transgenic humanized mouse model systems offer a much better method to study the HLA-A-related principal mechanisms for vaccine development and HLA-Arestricted responses against infection in human.Methods:A recombinant gene encoding the chimeric HLA-A30 monochain was constructed.This HHD molecule contains the following:α1-α2 domains of HLA-A30,α3 and cytoplasmic domains of H-2D~b,linked at its N-terminus to the C-terminus of humanβ2m by a 15-amino-acid peptide linker.The recombinant gene encoding the chimeric HLA-A30 monochain cassette was introduced into bacterial artificial chromosome(BAC)CH502-67J3 containing the HLA-A01 gene locus by Red-mediated homologous recombination.Modified BAC CH502-67J3 was microinjected into the pronuclei of wild-type mouse oocytes.This humanized mouse model was further used to assess the immune responses against influenza A virus(H1N1)pdm09 clinically isolated from human patients.Immune cell population,cytokine production,and histopathology in the lung were analyzed.Results:We describe a novel humanβ2m-HLA-A30(α1α2)-H-2D~b(α3 transmembrane cytoplasmic)(HHD)monochain transgenic mouse strain,which contains the intact HLA-A01 gene locus including 49 kb 5’-UTR and 74 kb 3’-UTR of HLA-A01*01.Five transgenic lines integrated into the large genomic region of HLA-A gene locus were obtained,and the robust expression of exogenous transgene was detected in various tissues from A30-18#and A30-19#lines encompassing the intact flanking sequences.Flow cytometry revealed that the introduction of a large genomic region in HLA-A gene locus can influence the immune cell constitution in humanized mice.Pdm09 infection caused a similar immune response among HLA-A30 Tg humanized mice and wild-type mice,and induced the rapid increase of cytokines,including IFN-γ,TNF-α,and IL-6,in both HLA-A30 humanized Tg mice and wild-type mice.The expression of HLA-A30 transgene was dramatically promoted in tissues from A30-9#line at 3 days post-infection(dpi).Conclusions:We established a promising preclinical research animal model of HLA-A30 Tg humanized mouse,which could accelerate the identification of novel HLA-A30-restricted epitopes and vaccine development,and support the study of HLA-A-restricted responses against infection in humans.展开更多
基金CAMS Innovation Fund for Medical Sciences,Grant/Award Number:2021-I2M-1-035National Key Research and Development Project,Grant/Award Number:2022YFA1103803。
文摘In recent years,humanized immune system(HIS)mice have been gradually used as models for preclinical research in pharmacotherapies and cell therapies with major breakthroughs in tumor and other fields,better mimicking the human immune system and the tumor immune microenvironment,compared to traditional immunodeficient mice.To better promote the application of HIS mice in preclinical research,we se-lectively summarize the current prevalent and breakthrough research and evaluation of chimeric antigen receptor(CAR)-T cells in various antiviral and antitumor treat-ments.By exploring its application in preclinical research,we find that it can better reflect the actual clinical patient condition,with the advantages of providing high-efficiency detection indicators,even for progressive research and development.We believe that it has better clinical patient simulation and promotion for the updated design of CAR-T cell therapy than directly transplanted immunodeficient mice.The characteristics of the main models are proposed to improve the use defects of the existing models by reducing the limitation of antihost reaction,combining multiple models,and unifying sources and organoid substitution.Strategy study of relapse and toxicity after CAR-T treatment also provides more possibilities for application and development.
文摘Studying the skin care efficacy of recombinant humanized collagen based on in vitro level.The stability of the recombinant humanized collagen was first analyzed by treating at different temperatures,then its skincare efficacy based on in vitro level was evaluated by detecting the inhibition rate of elastase,the inhibition rate of collagenase,the protein content of type I collagen in human fibroblasts,the inhibition of reactive oxygen species(ROS)with human keratinocytes,and the effects of the recombinant humanized collagen on the expression of hyaluronic acid(HA),filaggrin(FLG)and transglutaminase 1(TGM1)in keratinocytes.The results showed that recombinant humanized collagen was able to maintain stability at temperatures below 70℃.With regard to its skincare efficacy,recombinant humanized collagen could inhibit elastase and collagenase activities and promote the increase of type I collagen content in human fibroblasts.It also showed good inhibition of ROS in keratinocytes in vitro and could increase the expression of HA,FLG,and TGM1 in keratinocytes.In short,the recombinant humanized collagen exhibited a favourable skin care effect in vitro level.This study proved that it has potential firming,anti-wrinkle,moisturizing,and repairing efficacy,and is a valuable cosmetic raw material.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2301403 and 2022YFF0711000。
文摘Background:This study aimed to construct and characterize a humanized influenza mouse model expressing hST6GAL1.Methods:Humanized fragments,consisting of the endothelial cell-specific K18 promoter,human ST6GAL1-encoding gene,and luciferase gene,were microinjected into the fertilized eggs of mice.The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offspring were identified using PCR.Mice exhibiting elevated expression of the hST6GAL1 gene were selectively bred for propagation,and in vivo analysis was performed for screening.Expression of the humanized gene was tested by performing immunohistochemical(IHC)analysis.Hematologic and biochemical analyses using the whole blood and serum of humanized hST6GAL1 mice were performed.Results:Successful integration of the human ST6GAL1 gene into the mouse genome led to the overexpression of human SiaT ST6GAL1.Seven mice were identified as carrying copies of the humanized gene,and the in vivo analysis indicated that hST6GAL1gene expression in positive mice mirrored influenza virus infection characteristics.The IHC results revealed that hST6GAL1 was expressed in the lungs of humanized mice.Moreover,the hematologic and biochemical parameters of the positive mice were within the normal range.Conclusion:A humanized influenza mouse model expressing the hST6GAL1 gene was successfully established and characterized.
文摘BACKGROUND With advancements in the diagnosis and treatment of lung diseases,lung segment surgery has become increasingly common.Postoperative rehabilitation is critical for patient recovery,yet challenges such as complications and adverse outcomes persist.Incorporating humanized nursing modes and novel treatments like nitric oxide inhalation may enhance recovery and reduce postoperative complications.AIM To evaluate the effects of a humanized nursing mode combined with nitric oxide inhalation on the rehabilitation outcomes of patients undergoing lung surgery,focusing on pulmonary function,recovery speed,and overall treatment costs.METHODS A total of 79 patients who underwent lung surgery at a tertiary hospital from March 2021 to December 2021 were divided into a control group(n=39)receiving a routine nursing program and an experimental group(n=40)receiving additional humanized nursing interventions and atomized inhalation of nitric oxide.Key indicators were compared between the two groups alongside an analysis of treatment costs.RESULTS The experimental group demonstrated significant improvements in pulmonary function,reduced average recovery time,and lower total treatment costs compared to the control group.Moreover,the quality of life in the experimental group was significantly better in the 3 months post-surgery,indicating a more effective rehabilitation process.CONCLUSION The combination of humanized nursing mode and nitric oxide inhalation in postoperative care for lung surgery patients significantly enhances pulmonary rehabilitation outcomes,accelerates recovery,and reduces economic burden.This approach offers a promising reference for improving patient care and rehabilitation efficiency following lung surgery.
文摘Objective:To explore the application effect of humanized nursing management in pediatric rehabilitation wards.Methods:82 pediatric patients admitted to our hospital between January 2023 and January 2024 were randomly divided into a control group and an observation group.Among them,the control group was given routine care,while the observation group received humanized nursing management,and the clinical nursing effects and situations of the two groups of children were compared and analyzed.Results:After nursing,the observation group showed significantly better performance in intelligent Developmental Quotient(DQ)values(P<0.05).The clinical nursing satisfaction of the observation group was significantly better than that of the control group(χ^(2)=11.710,P<0.05).Conclusion:Humanized nursing management for patients in pediatric rehabilitation wards not only improves their recovery but also significantly enhances parental satisfaction,which is worth learning from and promoting in clinical settings.
文摘Objective:To analyze the effect of implementing humanized nursing service intervention for severe patients in the intensive care unit(ICU).Methods:A hundred severely ill ICU patients who were treated from January 2021 to December 2022 were selected and grouped into a control group and an observation group.The control group adopted routine nursing services and the observation group adopted humanized nursing services.The nursing outcome of the two groups was analyzed.Results:The nursing risk incidence of the observation group was lower than that of the control group(P<0.05).The scale of comfort and nursing satisfaction in the observation group was higher than those in the control group(P<0.05).Conclusion:The implementation of a humanized care service for ICU patients lowered nursing risk incidences and increased the physical comfort and nursing satisfaction of these patients.
文摘Objective:To implement humanized quality care in critical respiratory failure nursing,observe the effect,and analyze the satisfaction.Methods:80 patients with severe respiratory failure were divided into 40 cases per group(admitted from February 2022 to December 2023)by double-blind method,the control group performed routine care,and the observation group was given humanized quality care.Results:After the nursing care,two respiratory function indexes of the observation group were lower than those of the control group,and two pulmonary function indexes were higher than those of the control group(P<0.05);regarding the complication situation,the incidence rate of the observation group was lower(P<0.05);regarding the nursing care satisfaction situation,the observation group had a higher level of total satisfaction(P<0.05).Conclusion:The application of a humanized quality nursing intervention model in the care of critical respiratory failure can actively improve patients’respiratory status and lung function,reduce complications,and satisfy patients.
文摘Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata et al.,2023).Mitochondrial dysfunction,characterized by an imbalance in ATP levels and excessive production of mitochondrial reactive oxygen species,is a key factor that impedes neural regeneration in neurodegenerative diseases and after neuronal injury(Han et al.,2016,2020;Zheng et al.,2016;Zong et al.,2024).
文摘Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.
基金supported by the Christiane and Claudia Hempel Foundation for Regenerative Medicineby the James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung(to PK)。
文摘Introduction to human endogenous retrovirus type-W(HERV-W): Genomic inheritance from the past includes retroviral sequences that have been stably incorporated into our genomes and account for up to 8% of human DNA.
基金supported by the National Natural Science Foundation of China,No.82301403(to DZ)。
文摘Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金supported by 1RO1EY032959-01 and RO1 supplement from NIH,Schuellein Chair Endowment Fund and STEM Catalyst Grant from the University of Dayton(to AS).
文摘Acetyltransferases,required to transfer an acetyl group on protein are highly conserved proteins that play a crucial role in development and disease.Protein acetylation is a common post-translational modification pivotal to basic cellular processes.Close to 80%-90%of proteins are acetylated during translation,which is an irreversible process that affects protein structure,function,life,and localization.In this review,we have discussed the various N-acetyltransferases present in humans,their function,and how they might play a role in diseases.Furthermore,we have focused on N-acetyltransferase 9 and its role in microtubule stability.We have shed light on how N-acetyltransferase 9 and acetylation of proteins can potentially play a role in neurodegenerative diseases.We have specifically discussed the N-acetyltransferase 9-acetylation independent function and regulation of c-Jun N-terminal kinase signaling and microtubule stability during development and neurodegeneration.
文摘Landscape plants play a role of decorating and beautifying the indoor environment.From the perspective of humanization,the functions and application patterns of landscape plants in the interior environmental design are analyzed in this study,and finally the application rules of landscape plants in the humanized interior environmental design are summarized.
基金supported by the followed funds:National Science and Technology Major Project(2017ZX10304402-001-006,2017ZX10304402-001-012,2016YFD0500208)Shanghai Science and Technology Commission“R&D public service platform and institutional capacity improvement project”(21DZ2291300)+1 种基金Shanghai scientific research projects(19140905300)Shanghai Public Health Clinical Center projects(KY-GW-2019-11,KY-GW-2019-19,and KY-GW-2021-39)。
文摘Background:There are remarkable genetic differences between animal major histocompatibility complex(MHC)systems and the human leukocyte antigen(HLA)system.HLA transgenic humanized mouse model systems offer a much better method to study the HLA-A-related principal mechanisms for vaccine development and HLA-Arestricted responses against infection in human.Methods:A recombinant gene encoding the chimeric HLA-A30 monochain was constructed.This HHD molecule contains the following:α1-α2 domains of HLA-A30,α3 and cytoplasmic domains of H-2D~b,linked at its N-terminus to the C-terminus of humanβ2m by a 15-amino-acid peptide linker.The recombinant gene encoding the chimeric HLA-A30 monochain cassette was introduced into bacterial artificial chromosome(BAC)CH502-67J3 containing the HLA-A01 gene locus by Red-mediated homologous recombination.Modified BAC CH502-67J3 was microinjected into the pronuclei of wild-type mouse oocytes.This humanized mouse model was further used to assess the immune responses against influenza A virus(H1N1)pdm09 clinically isolated from human patients.Immune cell population,cytokine production,and histopathology in the lung were analyzed.Results:We describe a novel humanβ2m-HLA-A30(α1α2)-H-2D~b(α3 transmembrane cytoplasmic)(HHD)monochain transgenic mouse strain,which contains the intact HLA-A01 gene locus including 49 kb 5’-UTR and 74 kb 3’-UTR of HLA-A01*01.Five transgenic lines integrated into the large genomic region of HLA-A gene locus were obtained,and the robust expression of exogenous transgene was detected in various tissues from A30-18#and A30-19#lines encompassing the intact flanking sequences.Flow cytometry revealed that the introduction of a large genomic region in HLA-A gene locus can influence the immune cell constitution in humanized mice.Pdm09 infection caused a similar immune response among HLA-A30 Tg humanized mice and wild-type mice,and induced the rapid increase of cytokines,including IFN-γ,TNF-α,and IL-6,in both HLA-A30 humanized Tg mice and wild-type mice.The expression of HLA-A30 transgene was dramatically promoted in tissues from A30-9#line at 3 days post-infection(dpi).Conclusions:We established a promising preclinical research animal model of HLA-A30 Tg humanized mouse,which could accelerate the identification of novel HLA-A30-restricted epitopes and vaccine development,and support the study of HLA-A-restricted responses against infection in humans.