The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then th...The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.展开更多
Mobile machinery energy efficiency and emission pollution are the national and worldwide issues. This paper contributes in solving these problems by applying a speed variable power source. Unfortunately, almost all of...Mobile machinery energy efficiency and emission pollution are the national and worldwide issues. This paper contributes in solving these problems by applying a speed variable power source. Unfortunately, almost all of the speed variable systems have the dynamic response problem when the motor starts with full load or heavy load. To address this problem, a hydraulic accumulator is used to balance the load of the power source for assisting starting of the motor and a matching method combined with speed and displacement control of the pump is proposed to improve the energy efficiency and dynamic performance simultaneously under different working conditions. Also, the power source/valve combined control strategy of an independent metering system is designed to realize flow matching of the whole system. Firstly, a test system is established to study the dynamic performance and energy efficiency of the speed variable power source with an auxiliary accumulator. Working performance and energy consumption of the power source under different rotating speeds and different loads are studied. And then, the hydraulic excavator test rig with the proposed system is constructed. Furthermore, the working performance of the excavator with the speed-fixed and speed-variable strategy are studied comparatively. Results show that, compared with fixed-speed strategy, the electric power consumption during the idle period and partial load condition can be reduced about 2.05 kW and 1.37 kW. The energy efficiency of speed variable power source is about 40%-71%, which is higher than that of the fixed-speed power source by 3%–10%.展开更多
Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel mo...Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel modelling method for a highly nonlinear system of a hydraulic excavator is presented. Based on the data collected in the excavator's arms driving experiments, a data-based excavator dynamic model using Simplified Refined Instrumental Variable (SRIV) identification and estimation algorithms is established. The validity of the proposed data-based model is indirectly demonstrated by the performance of computer simulation and the.real machine motion control exoeriments.展开更多
This work deals with analysis of dynamic behaviour of hydraulic excavator on the basis of developed dynamic-mathematical model.The mathematical model with maximum five degrees of freedom is extended by new generalized...This work deals with analysis of dynamic behaviour of hydraulic excavator on the basis of developed dynamic-mathematical model.The mathematical model with maximum five degrees of freedom is extended by new generalized coordinate which represents rotation around transversal main central axis of inertia of undercarriage.The excavator is described by a system of six nonlinear,nonhomogenous differential equations of the second kind.Numerical analysis of the differential equations has been done for BTH-600 hydraulic excavator with moving mechanism with pneumatic wheels.展开更多
In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedo...In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°.展开更多
Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable...Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable level digging or flat surface finishing may take a large percentage. Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety. For the purpose of investigating the technology without loss of generality, this research is conducted to create a coordinate control method for the boom, arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works. On the basis of the kinematic analysis of the excavator linkage system, the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method. The coordination of those hydraulic cylinders is realized by controlling three electro-hydraulic proportional valves coordinately. Therefore, the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems. This coordinate control algorithm was validated on a wheeled hydraulic excavator, and the validation results indicated that this developed control method could satisfactorily accomplish the auto-digging function for level digging or flat surface finishing.展开更多
Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hyb...Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hybrid construction machinery is established, and experimental study on constant work-point control for parallel hybrid system with capacitor accumulator is carried out using the pressure and flow rate derived from boom cylinder of hydraulic excavator in actual work as the simulating loads. A program of double work-point control is proposed and proved by further experiments.展开更多
In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an...In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.展开更多
Based on the working principle of vibratory excavation of hydraulic excavator,the expression of digging resistance changed with time under sine wave inspiritment was deduced;a comparison analysis was given after calcu...Based on the working principle of vibratory excavation of hydraulic excavator,the expression of digging resistance changed with time under sine wave inspiritment was deduced;a comparison analysis was given after calculating the forces status of rock and soil under static load and vibratory load respectively by using MATLAB;and then RFPA-2D(rock failure process analysis code)was used to make comparison of simulation experiment on rock and soil failure process under static load and vibratory load.The results demonstrate that,compared with the normal excavation under the same situation,the digging resistance and the energy consumption can be reduced by respectively 30%and 60%at maximum,and that the working efficiency can be increased by 45%at maximum owing to vibratory excavation.展开更多
Visual tracking has been widely applied in construction industry and attracted signifi-cant interests recently. Lots of research studies have adopted visual tracking techniques on the surveillance of construction work...Visual tracking has been widely applied in construction industry and attracted signifi-cant interests recently. Lots of research studies have adopted visual tracking techniques on the surveillance of construction workforce, project productivity and construction safety. Until now, visual tracking algorithms have gained promising performance when tracking un-articulated equipment in construction sites. However, state-of-art tracking algorithms have unguaranteed performance in tracking articulated equipment, such as backhoes and excavators. The stretching buckets and booms are the main obstacles of successfully tracking articulated equipment. In order to fill this knowledge gap, the part-based tracking algorithms are introduced in this paper for tracking articulated equipment in construction sites. The part-based tracking is able to track different parts of target equipment while using multiple tracking algorithms at the same sequence. Some existing tracking methods have been chosen according to their outstanding performance in the computer vision community. Then, the part-based algorithms were created on the basis of selected visual tracking methods and tested by real construction sequences. In this way, the tracking performance was evaluated from effectiveness and robustness aspects. Throughout the quantification analysis, the tracking performance of articulated equipment was much more improved by using the part-based tracking algorithms.展开更多
To improve the energy efficiency of a hydraulic boom, a new energy-saving system adopting a hydraulic accumulator is proposed. First, the principle of the system is presented. Then, the dynamic simulation is intro- du...To improve the energy efficiency of a hydraulic boom, a new energy-saving system adopting a hydraulic accumulator is proposed. First, the principle of the system is presented. Then, the dynamic simulation is intro- duced. Finally, the conclusions are given based on the analysis of simulation data. In Summary, the innovative energy-saving system combines flow regeneration and potential energy recovery, runs steadily and comfortably, saves energy remarkably and has good potential for improving energy utilization of a hydraulic excavator.展开更多
A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent...A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent-magnet synchronous machines (PMSMs) in a hybrid hydraulic excavator (HHE) is presented based on the analysis of the working conditions and requirements of an HHE. A parameterized design approach, which combines the analytical model and the 2D finite element method (FEM), is applied to the electric machine to improve the design efficiency and accuracy. The analytical model is employed to optimize the electric machine efficiency and obtain the statordimension and flux density distribution. The rotor is designed with the FEM to satisfy the flux requirements obtained in stator design. The rotor configuration of the PMSM employs an interior magnet structure, thus resulting in some inverse saliency, which allows for much higher values in magnetic flux density. To reduce the rotor leakage, a disconnected type silicon steel block structure is adopted. To improve the air gap flux density distribution, the trapezoid permanent magnet (PM) and centrifugal rotor structure are applied to PMSM. Demagnetization and armature reactions are also taken into consideration and calculated by the FEM. A prototype of the newly designed electric machine has been fabri- cated and tested on the experimental platform. The analytical design results are validated by measurements.展开更多
In this paper,quantitative measures for the assessment of the hydraulic excavator digging efficiency are proposed and developed.The following factors are considered:(a) boundary digging forces allowed for by the stabi...In this paper,quantitative measures for the assessment of the hydraulic excavator digging efficiency are proposed and developed.The following factors are considered:(a) boundary digging forces allowed for by the stability of an excavator,(b) boundary digging forces enabled by the driving mechanisms of the excavator,(c) factors taking into consideration the digging position in the working range of an excavator,and(d) sign and direction of potential digging resistive force.A corrected digging force is defined and a mathematical model of kinematic chain and drive mechanisms of a five-member excavator configuration was developed comprising:an undercarriage,a rotational platform and an attachment with boom,stick,and bucket.On the basis of the mathematical model of the excavator,software was developed for computation and detailed analysis of the digging forces in the entire workspace of the excavator.By using the developed software,the analysis of boundary digging forces is conducted and the corrected digging force is determined for two models of hydraulic excavators of the same mass(around 17 000 kg) with identical kinematic chain parameters but with different parameters of manipulator driving mechanisms.The results of the analysis show that the proposed set of quantitative measures can be used for assessment of the digging efficiency of existing excavator models and to serve as an optimization criterion in the synthesis of manipulator driving mechanisms of new excavator models.展开更多
The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the po...The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.展开更多
While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been ex...While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been explored thoroughly yet. In this paper, we present an automatic, video-based algorithm for detecting hydraulic excavators and dump trucks. Derived from lessons learned from video processing, we proposed methods for foreground detection based on an improved frame difference algorithm, and then detected hydraulic excavators and dump trucks in the respective region of interest. From our analysis, we proposed methods based on inverse valley feature of mechanical arm and spatial-temporal reasoning for hydraulic excavator detection. In addition, we explored dump truck detection strategies that combine structured component projection with the spatial relationship. Experiments on real-monitoring sites demonstrated the promising performance of our system.展开更多
With the formation of the Center for Compact and Efficient Fluid Power (CCEFP) in 2006, there has been a resurgence of academic fluid power research in the USA. The centre’s vision is to make fluid power the techno...With the formation of the Center for Compact and Efficient Fluid Power (CCEFP) in 2006, there has been a resurgence of academic fluid power research in the USA. The centre’s vision is to make fluid power the technology of choice for power generation, transmission, storage, and motion control. To address fluid power’s key technical barriers, the CCEFP research strategy supports and coordinates pre-competitive research in three thrust areas: efficiency, compactness and effectiveness, where effectiveness means making fluid power safer, easier to use, leak free and quiet. This paper reviews some of the most important results from the first decade of CCEFP research.展开更多
基金Project (No. 2006C11148) supported by the ScienceTechnology Project of Zhejiang Province, China
文摘The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575374,U1510206)
文摘Mobile machinery energy efficiency and emission pollution are the national and worldwide issues. This paper contributes in solving these problems by applying a speed variable power source. Unfortunately, almost all of the speed variable systems have the dynamic response problem when the motor starts with full load or heavy load. To address this problem, a hydraulic accumulator is used to balance the load of the power source for assisting starting of the motor and a matching method combined with speed and displacement control of the pump is proposed to improve the energy efficiency and dynamic performance simultaneously under different working conditions. Also, the power source/valve combined control strategy of an independent metering system is designed to realize flow matching of the whole system. Firstly, a test system is established to study the dynamic performance and energy efficiency of the speed variable power source with an auxiliary accumulator. Working performance and energy consumption of the power source under different rotating speeds and different loads are studied. And then, the hydraulic excavator test rig with the proposed system is constructed. Furthermore, the working performance of the excavator with the speed-fixed and speed-variable strategy are studied comparatively. Results show that, compared with fixed-speed strategy, the electric power consumption during the idle period and partial load condition can be reduced about 2.05 kW and 1.37 kW. The energy efficiency of speed variable power source is about 40%-71%, which is higher than that of the fixed-speed power source by 3%–10%.
文摘Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel modelling method for a highly nonlinear system of a hydraulic excavator is presented. Based on the data collected in the excavator's arms driving experiments, a data-based excavator dynamic model using Simplified Refined Instrumental Variable (SRIV) identification and estimation algorithms is established. The validity of the proposed data-based model is indirectly demonstrated by the performance of computer simulation and the.real machine motion control exoeriments.
文摘This work deals with analysis of dynamic behaviour of hydraulic excavator on the basis of developed dynamic-mathematical model.The mathematical model with maximum five degrees of freedom is extended by new generalized coordinate which represents rotation around transversal main central axis of inertia of undercarriage.The excavator is described by a system of six nonlinear,nonhomogenous differential equations of the second kind.Numerical analysis of the differential equations has been done for BTH-600 hydraulic excavator with moving mechanism with pneumatic wheels.
基金Project(2003AA430200) supported by the National Hi-Tech Research and Development Program(863) of China
文摘In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°.
基金supported by National Natural Science Foundation of China (Grant No. 50875228)
文摘Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable level digging or flat surface finishing may take a large percentage. Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety. For the purpose of investigating the technology without loss of generality, this research is conducted to create a coordinate control method for the boom, arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works. On the basis of the kinematic analysis of the excavator linkage system, the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method. The coordination of those hydraulic cylinders is realized by controlling three electro-hydraulic proportional valves coordinately. Therefore, the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems. This coordinate control algorithm was validated on a wheeled hydraulic excavator, and the validation results indicated that this developed control method could satisfactorily accomplish the auto-digging function for level digging or flat surface finishing.
文摘Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hybrid construction machinery is established, and experimental study on constant work-point control for parallel hybrid system with capacitor accumulator is carried out using the pressure and flow rate derived from boom cylinder of hydraulic excavator in actual work as the simulating loads. A program of double work-point control is proposed and proved by further experiments.
基金Project(2003AA430200)supported by the National High Technology Research and Development Program of China
文摘In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.
基金Project(2003AA430200)supported by the National High-Tech Research and Development Program of China
文摘Based on the working principle of vibratory excavation of hydraulic excavator,the expression of digging resistance changed with time under sine wave inspiritment was deduced;a comparison analysis was given after calculating the forces status of rock and soil under static load and vibratory load respectively by using MATLAB;and then RFPA-2D(rock failure process analysis code)was used to make comparison of simulation experiment on rock and soil failure process under static load and vibratory load.The results demonstrate that,compared with the normal excavation under the same situation,the digging resistance and the energy consumption can be reduced by respectively 30%and 60%at maximum,and that the working efficiency can be increased by 45%at maximum owing to vibratory excavation.
文摘Visual tracking has been widely applied in construction industry and attracted signifi-cant interests recently. Lots of research studies have adopted visual tracking techniques on the surveillance of construction workforce, project productivity and construction safety. Until now, visual tracking algorithms have gained promising performance when tracking un-articulated equipment in construction sites. However, state-of-art tracking algorithms have unguaranteed performance in tracking articulated equipment, such as backhoes and excavators. The stretching buckets and booms are the main obstacles of successfully tracking articulated equipment. In order to fill this knowledge gap, the part-based tracking algorithms are introduced in this paper for tracking articulated equipment in construction sites. The part-based tracking is able to track different parts of target equipment while using multiple tracking algorithms at the same sequence. Some existing tracking methods have been chosen according to their outstanding performance in the computer vision community. Then, the part-based algorithms were created on the basis of selected visual tracking methods and tested by real construction sequences. In this way, the tracking performance was evaluated from effectiveness and robustness aspects. Throughout the quantification analysis, the tracking performance of articulated equipment was much more improved by using the part-based tracking algorithms.
文摘To improve the energy efficiency of a hydraulic boom, a new energy-saving system adopting a hydraulic accumulator is proposed. First, the principle of the system is presented. Then, the dynamic simulation is intro- duced. Finally, the conclusions are given based on the analysis of simulation data. In Summary, the innovative energy-saving system combines flow regeneration and potential energy recovery, runs steadily and comfortably, saves energy remarkably and has good potential for improving energy utilization of a hydraulic excavator.
基金Project supported by the National Natural Science Foundation of China(Nos.51475414 and 51221004)
文摘A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent-magnet synchronous machines (PMSMs) in a hybrid hydraulic excavator (HHE) is presented based on the analysis of the working conditions and requirements of an HHE. A parameterized design approach, which combines the analytical model and the 2D finite element method (FEM), is applied to the electric machine to improve the design efficiency and accuracy. The analytical model is employed to optimize the electric machine efficiency and obtain the statordimension and flux density distribution. The rotor is designed with the FEM to satisfy the flux requirements obtained in stator design. The rotor configuration of the PMSM employs an interior magnet structure, thus resulting in some inverse saliency, which allows for much higher values in magnetic flux density. To reduce the rotor leakage, a disconnected type silicon steel block structure is adopted. To improve the air gap flux density distribution, the trapezoid permanent magnet (PM) and centrifugal rotor structure are applied to PMSM. Demagnetization and armature reactions are also taken into consideration and calculated by the FEM. A prototype of the newly designed electric machine has been fabri- cated and tested on the experimental platform. The analytical design results are validated by measurements.
基金Project (No 035049) partly supported by the Ministry of Education and Science of the Republic of Serbia
文摘In this paper,quantitative measures for the assessment of the hydraulic excavator digging efficiency are proposed and developed.The following factors are considered:(a) boundary digging forces allowed for by the stability of an excavator,(b) boundary digging forces enabled by the driving mechanisms of the excavator,(c) factors taking into consideration the digging position in the working range of an excavator,and(d) sign and direction of potential digging resistive force.A corrected digging force is defined and a mathematical model of kinematic chain and drive mechanisms of a five-member excavator configuration was developed comprising:an undercarriage,a rotational platform and an attachment with boom,stick,and bucket.On the basis of the mathematical model of the excavator,software was developed for computation and detailed analysis of the digging forces in the entire workspace of the excavator.By using the developed software,the analysis of boundary digging forces is conducted and the corrected digging force is determined for two models of hydraulic excavators of the same mass(around 17 000 kg) with identical kinematic chain parameters but with different parameters of manipulator driving mechanisms.The results of the analysis show that the proposed set of quantitative measures can be used for assessment of the digging efficiency of existing excavator models and to serve as an optimization criterion in the synthesis of manipulator driving mechanisms of new excavator models.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2010AA044401)
文摘The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.
文摘While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been explored thoroughly yet. In this paper, we present an automatic, video-based algorithm for detecting hydraulic excavators and dump trucks. Derived from lessons learned from video processing, we proposed methods for foreground detection based on an improved frame difference algorithm, and then detected hydraulic excavators and dump trucks in the respective region of interest. From our analysis, we proposed methods based on inverse valley feature of mechanical arm and spatial-temporal reasoning for hydraulic excavator detection. In addition, we explored dump truck detection strategies that combine structured component projection with the spatial relationship. Experiments on real-monitoring sites demonstrated the promising performance of our system.
基金This research in this paper was funded by the Engineering Research Center for Compact and Efficient Fluid Power, supported by the National Science Foundation under Grant No. EEC-0540834.
文摘With the formation of the Center for Compact and Efficient Fluid Power (CCEFP) in 2006, there has been a resurgence of academic fluid power research in the USA. The centre’s vision is to make fluid power the technology of choice for power generation, transmission, storage, and motion control. To address fluid power’s key technical barriers, the CCEFP research strategy supports and coordinates pre-competitive research in three thrust areas: efficiency, compactness and effectiveness, where effectiveness means making fluid power safer, easier to use, leak free and quiet. This paper reviews some of the most important results from the first decade of CCEFP research.