At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages...At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years.展开更多
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves...La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.展开更多
The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni...The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging.展开更多
Anodic electrodes with the mixture of hydrogen storage alloys and different contents of Co3O4(2%,4%,6% and 8%,mass fraction) powders were made.The effects of Co3O4 on the electrochemical performance of the alloy ele...Anodic electrodes with the mixture of hydrogen storage alloys and different contents of Co3O4(2%,4%,6% and 8%,mass fraction) powders were made.The effects of Co3O4 on the electrochemical performance of the alloy electrodes were studied.The constant charge-discharge tests show that the discharge capacity of alloy electrodes with Co3O4 significantly increases,and the maximum discharge capacities of electrodes with 2%,4%,6% and 8% Co3O4 are higher than the electrode with no Co3O4 by 0.83%,4.86%,7.18% and 9.21%,accordingly.Linear polarization(LP) and electrochemical impedance spectroscopy(EIS) tests suggest that charge-transfer resistance decreases by the addition of Co3O4.Cyclic voltammogram(CV),scanning electron microscopy(SEM) and energy dispersive spectrum(EDS) tests indicate that Co3O4 can partly dissolve and experience a reversible oxidation-reduction process of Co to Co(OH)2,leading to the improvement in the electrochemical performance of hydrogen storage alloy.展开更多
The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi 3.55 Mn 0.35 Co 0.20 Al 0.20 Cu 0.75 Fe 0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) ...The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi 3.55 Mn 0.35 Co 0.20 Al 0.20 Cu 0.75 Fe 0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) analysis indicated that annealing treatment remarkably reduced the lattice strain and defects, and increased the unit-cell volume. The optical microscope analysis showed that the as-cast alloy had a crass dendrite microstructure with noticeable composition segregation, which gradually disappeared with increasing annealing temperature, and the micro-structure changed to an equiaxed structure after annealing the alloy at 1233 K. The electrochemical tests indicated that the annealed alloys demonstrated much better cycling stability compared with the as-cast one. The capacity retention at the 100th cycle increased from 90.0% (as-cast) to 94.7% (1273 K). The annealing treatment also improved the discharge capacity. However, the high rate dischargeability (HRD) value of the annealed alloy slightly dropped, which was believed to be ascribed to the decreased exchange current density and the hydrogen diffusion coefficient in alloy bulk.展开更多
In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0...In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La,Mg)2(Ni,Al)7 phase, La(Ni,A1)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,A1)7 phase, La(Ni,A1)5 phase, (La,Mg)Ni2 phase and (La,Mg)(Ni,A1)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Electrochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=-0.00) to 335 mAh/g (x=-0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=-0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.展开更多
The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, di...The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.展开更多
The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the ...The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the 0.2 C discharge capacity of as-cast LPCNi3.55Co0.75Mn0.4Al0.3 alloy increases with the increase of the thickness of the ingots. As-east alloy with the thickness of 10 mm shows better activation property, higher 1C discharge capacity and better cyclic stability than others. It is mainly contributed to its larger unit cell volume and less internal stress. Annealed LPCNi3.55Co0.75Mn0.4Al0.3 alloy with the thickness of 3 mm shows much better comprehensive electrochemical properties than as-east one; The cyclic. stability of the alloy with the thickness of 6 mm and the activation properties of the alloys with the thickness of 3 similar to 6 mm are improved after annealing. It is mainly owing to the great release of internal stress and the decrease of the segregation of Mn in the alloys.展开更多
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v...The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.展开更多
Hydrogenation kinetics of MLNi3.8(Co,Mn,Al)1.2 and MLNi3.7(Co,Mn,Al)1.2Cu0.1 alloy in α + β phase at the temperatUre range of 30 ~70 ℃ has been studied. The kinetic mechanism of hydrogen absorption is not affecte...Hydrogenation kinetics of MLNi3.8(Co,Mn,Al)1.2 and MLNi3.7(Co,Mn,Al)1.2Cu0.1 alloy in α + β phase at the temperatUre range of 30 ~70 ℃ has been studied. The kinetic mechanism of hydrogen absorption is not affected by initial hydrogen pressure. Temperature does not influence the rate of hydrogen absorption obviously. In the prior and later period of hydrogen absorption the rate-controlling step is chemical reaction and hydrogen diffusion in the hydride phase respectively for MLNi3.8(Co,Mn,Al)1.2 alloy. Adding Cu, the rate-controlling step changes from chemical reaction to the nucleation and growth of β phase in the prior period and the process of hydrogen absorption still controlled by diffusion in the later period.展开更多
The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage allo...The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage alloys were compared with those of the high-Co AB_5 typehydrogen storage alloy as well. The results showed that the faster the cooling of the low-Cohydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and thelonger cycle life of the battery are, but the electrochemical discharge capacity and high-ratedischarge ability are reduced. The high-rate discharge ability and charge retention of MH-Nibatteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to thosefor the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, buta little inferior in the cycle life.展开更多
A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5...A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5 phase by X-ray diffraction and scanning electron microscopy analyses, and the suitable absorption/desorption plateau was revealed by the measurement of P-C-I curve. Electrochemical studies indicate that the alloys exhibit good electrochemical properties such as high capacity and stable cycle life, and the discharge capacity is 369 mAh·g-1 at 0.2 C (72 mA·g-1). after 460 cycles, the capacity decay was only 19.4% at 2 C (720 mA·g-1).展开更多
Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen stora...Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen storage properties were investigated. The alloy pair Ti0.9Zr0.1Mn1.4- Cr0.35V0.2Fe0.05/TiCr1.55Mn0.2Fe0.2 was optimized based on the comprehensive performance of the studied alloys. The product hydrogen with a pressure of 100 MPa could be produced from 4 MPa feed gas when hot oil was used as a heat reservoir.展开更多
The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry....The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry. The results show that the reaction rate accelerates when the reaction temperature increases, and reaches its maximum at about 490 K, but if temperature is higher than 510 K, the reaction rate decreases rapidly. The whole reaction process is controlled by the reaction at the surface of the catalyst particles. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particle can be neglected. The apparent reaction rate is zero order for toluene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model is obtained. The kinetic model fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MlNi_5-toluene slurry system is 41.01 kJ·mol^(-1).展开更多
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos...Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries.展开更多
In order to improve the cycle stability of La-Mg-Ni-Co type alloy electrode, rapid quenching technology was employed. The effects of rapid quenching on the microstructure and cycle stability of the alloy were investig...In order to improve the cycle stability of La-Mg-Ni-Co type alloy electrode, rapid quenching technology was employed. The effects of rapid quenching on the microstructure and cycle stability of the alloy were investigated. The obtained results show that the La2Mg(Ni0.85Co0.15)9M0.1 (M=B, Cr) alloy electrodes are composed of (La, Mg)Ni3 phase, LaNi5 phase and a small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast MB alloy, and the Ni2B phase in the alloy nearly disappears after rapid quenching. Rapid quenching technology can slightly improve the cycling life of the alloy. When the quenching rate increases from 0 m·s-1 (As-cast is defined as quenching rate of 0 m·s-1) to 30 m·s-1, the cycle lives of the MB, MCr alloys enhance from 86 and 87 cycles to 106 and 119 cycles, respectively. On the other hand, the average capacity decay rates of the MB, MCr alloys decrease from 1.7172 and 1.7178 mAh·g-1·cycle-1 to 1.5751 and 1.3060 mAh·g-1·cycle-1 after 86 charge-discharges cycling, respectively.展开更多
The hydrogen storage properties of Ti1.2Fe+xCa (x=1%, 3% and 5% in mass fraction) alloys was investigated. Results stow that the modified alloys can be activated without any thermal treatment at room temperature due t...The hydrogen storage properties of Ti1.2Fe+xCa (x=1%, 3% and 5% in mass fraction) alloys was investigated. Results stow that the modified alloys can be activated without any thermal treatment at room temperature due to the addition of Ca and excess Ti in (lie alloys. Hydrogen storage properties of these modified alloys vary with Ca amount and reaction temperature. In addition, the influence mechanism of the addition of Ca and excessive Ti on the activation behavior and hydrogen storage capacity of the alloys was discussed.展开更多
In this paper,a simulation model for the temperature field in the solidification process and microstructure distribution is presented. Then, the result of simulation for the final microstructure distribution is compa...In this paper,a simulation model for the temperature field in the solidification process and microstructure distribution is presented. Then, the result of simulation for the final microstructure distribution is compared with experiment using 10-Kg ingot of MlNi3.55Al0.3Mn0.4CO0.75 (Ml: Lanthanum-rich Mischmetal) hydrogen stor- age alloy cast in a mould, which agrees with the experiment well. Finally, in order to obtain the expected as-cast microstructure distribution of 15-Kg ingot of MlNi3.55Al0.3Mn0.4Co0.75 alloy, the size of Cu mould is optimized using the model described. The optimized mould is then made and the alloy is cast in it, the expected as-cast microstructure distribution is obtained.展开更多
In order to improve the cycling stability of AB5 type alloy electrodes,rapid quenching technology and new alloy composition design were employed.A hydrogen storage alloy with nominal composition La0.6Ce0.4Ni3.6Co0.65M...In order to improve the cycling stability of AB5 type alloy electrodes,rapid quenching technology and new alloy composition design were employed.A hydrogen storage alloy with nominal composition La0.6Ce0.4Ni3.6Co0.65Mn0.4Al0.2Ti0.05(FeB)0.1 was prepared by vacuum magnetic levitation melting under high purity argon atmosphere,followed by rapid quenching at different cooling rates.XRD results show that all alloys exhibit the single-phase CaCu5-type structure.Electrochemical tests indicate that rapid quenching can slightly improve the cycling life of the alloy.Nevertheless,the high-rate dischargeability of the quenched alloys is lower than that of the as-cast alloy.展开更多
The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure compositi...The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure composition isotherms for both the alloy powder and the slurry suspended with MlNi 5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation Δ H ° and standard entropy of formation Δ S ° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of Δ H ° and Δ S ° for the hydriding reaction of hydrogen storage alloy (MlNi 5) of the slurry system and the gas solid system are all very close.展开更多
基金financed by the National Key Research and Development Program of China[grants number 2022YFB3803800]the National Natural Science Foundation of China[grants number 52071141,52271212,52201250,51771056]Interdisciplinary Innovation Program of North China Electric Power University[grants number XM2112355].
文摘At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years.
基金Project (51001043) supported by the National Natural Science Foundation of ChinaProject (NCET2011) supported by Program for New Century Excellent Talents in University, China+4 种基金Project (201104390) supported by China Postdoctoral Science Special FoundationProject (20100470990) supported by China Postdoctoral Science FoundationProject (2012IRTSTHN007) supported by Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, ChinaProject (2011J1003) supported by Baotou Science and Technology Project, ChinaProject (B2010-13) supported by the Doctoral Foundation of Henan Polytechnic University, China
文摘La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.
基金Project (2008CL068L) supported by the Natural Science Research Project of Higher Education of Jiangsu Province, ChinaProject (50901036) supported by the National Natural Science Foundation of China
文摘The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging.
基金Projects(21071153,20976198)supported by the National Natural Science Foundation of China
文摘Anodic electrodes with the mixture of hydrogen storage alloys and different contents of Co3O4(2%,4%,6% and 8%,mass fraction) powders were made.The effects of Co3O4 on the electrochemical performance of the alloy electrodes were studied.The constant charge-discharge tests show that the discharge capacity of alloy electrodes with Co3O4 significantly increases,and the maximum discharge capacities of electrodes with 2%,4%,6% and 8% Co3O4 are higher than the electrode with no Co3O4 by 0.83%,4.86%,7.18% and 9.21%,accordingly.Linear polarization(LP) and electrochemical impedance spectroscopy(EIS) tests suggest that charge-transfer resistance decreases by the addition of Co3O4.Cyclic voltammogram(CV),scanning electron microscopy(SEM) and energy dispersive spectrum(EDS) tests indicate that Co3O4 can partly dissolve and experience a reversible oxidation-reduction process of Co to Co(OH)2,leading to the improvement in the electrochemical performance of hydrogen storage alloy.
基金supported by the National Natural Science Foundation of China (No. 20673093)the Natural Science Foundation of Hebei Province, China (No. B2007000303)
文摘The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi 3.55 Mn 0.35 Co 0.20 Al 0.20 Cu 0.75 Fe 0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) analysis indicated that annealing treatment remarkably reduced the lattice strain and defects, and increased the unit-cell volume. The optical microscope analysis showed that the as-cast alloy had a crass dendrite microstructure with noticeable composition segregation, which gradually disappeared with increasing annealing temperature, and the micro-structure changed to an equiaxed structure after annealing the alloy at 1233 K. The electrochemical tests indicated that the annealed alloys demonstrated much better cycling stability compared with the as-cast one. The capacity retention at the 100th cycle increased from 90.0% (as-cast) to 94.7% (1273 K). The annealing treatment also improved the discharge capacity. However, the high rate dischargeability (HRD) value of the annealed alloy slightly dropped, which was believed to be ascribed to the decreased exchange current density and the hydrogen diffusion coefficient in alloy bulk.
基金supported by the Key Projects in International Science and Technology Cooperation from Ministry of Science and Technology of the PRC (2006DFB52550, 2007DFA51020)the National Natural Science Foundation of China (20363001)
文摘In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La,Mg)2(Ni,Al)7 phase, La(Ni,A1)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,A1)7 phase, La(Ni,A1)5 phase, (La,Mg)Ni2 phase and (La,Mg)(Ni,A1)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Electrochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=-0.00) to 335 mAh/g (x=-0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=-0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.
文摘The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.
文摘The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the 0.2 C discharge capacity of as-cast LPCNi3.55Co0.75Mn0.4Al0.3 alloy increases with the increase of the thickness of the ingots. As-east alloy with the thickness of 10 mm shows better activation property, higher 1C discharge capacity and better cyclic stability than others. It is mainly contributed to its larger unit cell volume and less internal stress. Annealed LPCNi3.55Co0.75Mn0.4Al0.3 alloy with the thickness of 3 mm shows much better comprehensive electrochemical properties than as-east one; The cyclic. stability of the alloy with the thickness of 6 mm and the activation properties of the alloys with the thickness of 3 similar to 6 mm are improved after annealing. It is mainly owing to the great release of internal stress and the decrease of the segregation of Mn in the alloys.
文摘The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.
文摘Hydrogenation kinetics of MLNi3.8(Co,Mn,Al)1.2 and MLNi3.7(Co,Mn,Al)1.2Cu0.1 alloy in α + β phase at the temperatUre range of 30 ~70 ℃ has been studied. The kinetic mechanism of hydrogen absorption is not affected by initial hydrogen pressure. Temperature does not influence the rate of hydrogen absorption obviously. In the prior and later period of hydrogen absorption the rate-controlling step is chemical reaction and hydrogen diffusion in the hydride phase respectively for MLNi3.8(Co,Mn,Al)1.2 alloy. Adding Cu, the rate-controlling step changes from chemical reaction to the nucleation and growth of β phase in the prior period and the process of hydrogen absorption still controlled by diffusion in the later period.
文摘The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage alloys were compared with those of the high-Co AB_5 typehydrogen storage alloy as well. The results showed that the faster the cooling of the low-Cohydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and thelonger cycle life of the battery are, but the electrochemical discharge capacity and high-ratedischarge ability are reduced. The high-rate discharge ability and charge retention of MH-Nibatteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to thosefor the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, buta little inferior in the cycle life.
文摘A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5 phase by X-ray diffraction and scanning electron microscopy analyses, and the suitable absorption/desorption plateau was revealed by the measurement of P-C-I curve. Electrochemical studies indicate that the alloys exhibit good electrochemical properties such as high capacity and stable cycle life, and the discharge capacity is 369 mAh·g-1 at 0.2 C (72 mA·g-1). after 460 cycles, the capacity decay was only 19.4% at 2 C (720 mA·g-1).
文摘Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen storage properties were investigated. The alloy pair Ti0.9Zr0.1Mn1.4- Cr0.35V0.2Fe0.05/TiCr1.55Mn0.2Fe0.2 was optimized based on the comprehensive performance of the studied alloys. The product hydrogen with a pressure of 100 MPa could be produced from 4 MPa feed gas when hot oil was used as a heat reservoir.
文摘The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry. The results show that the reaction rate accelerates when the reaction temperature increases, and reaches its maximum at about 490 K, but if temperature is higher than 510 K, the reaction rate decreases rapidly. The whole reaction process is controlled by the reaction at the surface of the catalyst particles. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particle can be neglected. The apparent reaction rate is zero order for toluene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model is obtained. The kinetic model fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MlNi_5-toluene slurry system is 41.01 kJ·mol^(-1).
基金financially supported by the Natural Science Foundation of Hebei Province(Nos.E2019203414,E2020203081 and E2019203161)the National Natural Science Foundation of China(Nos.51701175 and 51971197)+1 种基金the Innovation Fund for the Graduate Students of Hebei Province(No.CXZZBS2020062)the Doctoral Fund of Yanshan University(No.BL19031)
文摘Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries.
基金This work was financially supported by National Natural Science Foundations of China (No.50131040)Key Technologies R & D Program of Inner Mongolia (No.20050205)College Scientific Research Project of Inner Mongolia (No.NJ05064).
文摘In order to improve the cycle stability of La-Mg-Ni-Co type alloy electrode, rapid quenching technology was employed. The effects of rapid quenching on the microstructure and cycle stability of the alloy were investigated. The obtained results show that the La2Mg(Ni0.85Co0.15)9M0.1 (M=B, Cr) alloy electrodes are composed of (La, Mg)Ni3 phase, LaNi5 phase and a small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast MB alloy, and the Ni2B phase in the alloy nearly disappears after rapid quenching. Rapid quenching technology can slightly improve the cycling life of the alloy. When the quenching rate increases from 0 m·s-1 (As-cast is defined as quenching rate of 0 m·s-1) to 30 m·s-1, the cycle lives of the MB, MCr alloys enhance from 86 and 87 cycles to 106 and 119 cycles, respectively. On the other hand, the average capacity decay rates of the MB, MCr alloys decrease from 1.7172 and 1.7178 mAh·g-1·cycle-1 to 1.5751 and 1.3060 mAh·g-1·cycle-1 after 86 charge-discharges cycling, respectively.
基金This research was financially supported by the State Key Project for Fundamental Research (G2 000026406).]
文摘The hydrogen storage properties of Ti1.2Fe+xCa (x=1%, 3% and 5% in mass fraction) alloys was investigated. Results stow that the modified alloys can be activated without any thermal treatment at room temperature due to the addition of Ca and excess Ti in (lie alloys. Hydrogen storage properties of these modified alloys vary with Ca amount and reaction temperature. In addition, the influence mechanism of the addition of Ca and excessive Ti on the activation behavior and hydrogen storage capacity of the alloys was discussed.
文摘In this paper,a simulation model for the temperature field in the solidification process and microstructure distribution is presented. Then, the result of simulation for the final microstructure distribution is compared with experiment using 10-Kg ingot of MlNi3.55Al0.3Mn0.4CO0.75 (Ml: Lanthanum-rich Mischmetal) hydrogen stor- age alloy cast in a mould, which agrees with the experiment well. Finally, in order to obtain the expected as-cast microstructure distribution of 15-Kg ingot of MlNi3.55Al0.3Mn0.4Co0.75 alloy, the size of Cu mould is optimized using the model described. The optimized mould is then made and the alloy is cast in it, the expected as-cast microstructure distribution is obtained.
基金supported by the National High-Tech Research and Development Program of China (No.2006AA11A159)
文摘In order to improve the cycling stability of AB5 type alloy electrodes,rapid quenching technology and new alloy composition design were employed.A hydrogen storage alloy with nominal composition La0.6Ce0.4Ni3.6Co0.65Mn0.4Al0.2Ti0.05(FeB)0.1 was prepared by vacuum magnetic levitation melting under high purity argon atmosphere,followed by rapid quenching at different cooling rates.XRD results show that all alloys exhibit the single-phase CaCu5-type structure.Electrochemical tests indicate that rapid quenching can slightly improve the cycling life of the alloy.Nevertheless,the high-rate dischargeability of the quenched alloys is lower than that of the as-cast alloy.
文摘The hydriding/dehydriding thermodynamic properties of the slurry system formed by suspending La rich mischmetal nickel hydrogen storage alloy (MlNi 5) in Benzene (C 6H 6) were investigated. The pressure composition isotherms for both the alloy powder and the slurry suspended with MlNi 5 were measured at several temperatures(10, 20, 30, 40 ℃). The standard enthalpy of formation Δ H ° and standard entropy of formation Δ S ° for the alloy powder with and without benzene were determined respectively. The experimental results show that the values of Δ H ° and Δ S ° for the hydriding reaction of hydrogen storage alloy (MlNi 5) of the slurry system and the gas solid system are all very close.