This paper studies the structure and properties of the polycarbonate polyurethane epoxy resin (PCPU EP) blends being resistant to hydrolysis.The samples were analyzed by an infrared spectrome...This paper studies the structure and properties of the polycarbonate polyurethane epoxy resin (PCPU EP) blends being resistant to hydrolysis.The samples were analyzed by an infrared spectrometer,a differential scanning calorimeter,a scanning electron microscope and a dynamic viscoelastometer.The results show that PCPU EP blends have excellent resistance to hydrolysis and mechanical properties at the ratio of PCPU to EP equal to 10/100 (wt/wt).展开更多
Poly(glycolic acid)is a biocompatible as well as biocomposable polymer with superior mechanical and barrier properties and,consequently,has found important applications in both medical and packaging fields.However,the...Poly(glycolic acid)is a biocompatible as well as biocomposable polymer with superior mechanical and barrier properties and,consequently,has found important applications in both medical and packaging fields.However,the high hydrolysis rate in a high humidity environment restricts its application.In this work,a solid-state drawing process after melt extrusion is applied in order to produce fibrous PGA with enhanced mechanical properties and a much better resistance towards hydrolysis.The crystal structure of PGA gradually transformed from spherulites into oriented fibrous crystals in the stretching direction upon solid-state drawing.Meanwhile,both the length of microfibril and the size of lamellae increased initially with the drawing ratio(DR),while the chain-folded lamellae transformed into extended-chain fibrils at high(er)DR.The oriented structures lead to an overall improvement of the mechanical properties of PGA,e.g.,the tensile strength increased from 62.0±1.4 MPa to 910±54 MPa and the elongation at break increased from around 7%to 50%.Meanwhile,the heat capacity of totally mobile amorphous PGA(∆C_(p)^(0)=0.64 J·g^(−1)·℃^(−1))was reported for the first time,which was used to analyze the content of mobile amorphous fraction(XMAF)and rigid amorphous fraction(XRAF).Both the oriented chain-folded lamellae crystals and the tightly arranged RAF are beneficial to prevent water molecules from penetrating the matrix,thus improving the resistance towards hydrolysis.As a consequence,the fibrous PGA with a DR of 5 showed a tensile strength retention rate of 17.3%higher in comparison with the undrawn sample after 7-days accelerated hydrolysis.Therefore,this work provides a feasible method to improve the mechanical and resistance towards hydrolysis performance of PGA,which may broaden its application and prolong the shelf-life of PGA products.展开更多
Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be dec...Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be decomposed by microorganisms and could not be utilized,thereby resulting in severe resource wastage and environmental pollution.This study mainly explored the effects of biodegradation/hydrolysis conditions of the two types of starch substrates(native starch and enzymatically(α-amylase)hydrolyzed starch),which were treated via microorganism degradation within the simulated white water from OCC pulping system and their biodegradation products on the key properties were characterized via X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),and gel permeation chromatography(GPC)technologies.The effects of system temperature,pH value,starch concentration,and biodegradation time on starch biodegradation ratio and the characteristics of obtained biodegradated products from the two types of starches were studied.In addition,the effect ofα-amylase dosage on the biodegradation ratio of enzymatically hydrolyzed starch and its properties was investigated.It was found that the native starch presented a maximal degradation ratio at a system temperature of 55℃and pH value range of 5-7,respectively,the corresponding starch concentration within simulated white water system was 200 mg/L.Whereas the enzymatically hydrolyzed starch exhibited a highest degradation ratio at a system temperature of 50℃and pH value of 5.5,respectively,and the corresponding starch concentration within simulated white water system was 100 mg/L.It was verified that native starch is more readily bio-hydrolyzed and biodegradation-susceptive by microorganisms in simulated white water system of OCC pulping process,while the enzymatically hydrolyzed starch exhibits better biodegradation/hydrolysis resistance to the microbial degradation than that of native starch.This study provides a practical and interesting approach to investigate the starch hydrolysis or biodegradation behaviors in white water system of OCC pulping process,which would greatly contribute to the full recycling and valorized application of starch as a versatile additive during paperboard production.展开更多
Owing to its excellent high-temperature resistance and high conductivity,zirconium diboride(ZrB_(2)) has been applied as an infrared suppression coating.However,ZrB_(2)is susceptible to hydrolysis under high-moisture ...Owing to its excellent high-temperature resistance and high conductivity,zirconium diboride(ZrB_(2)) has been applied as an infrared suppression coating.However,ZrB_(2)is susceptible to hydrolysis under high-moisture conditions and even under mild working temperatures.The improvement in the hydrophobicity of the ZrB_(2)surface effectively reduces wetting by water and suppresses hydrolysis reaction,particularly under high-temperature and high-moisture conditions.Herein,we report a novel,easy,and highly reproducible method for producing a fully coated ZrB_(2)surface by developing a nanoscale hydrophobic layer of glassy LaF_(3)on the surface of ZrB_(2)powder particles in situ(i.e.,during the carbothermal synthesis of ZrB_(2)).Through the tests carried out at 200 ℃for 100-300 h in a hydrothermal reactor,the produced powders displayed remarkably high long-term hydrolysis resistance and pronounced chemical stability.Compared with treated ZrB_(2),ZrB_(2)@LaF_(3)remained lower infrared emissivity when continuously intensifying hydrolyzation process.The results suggest that a nanoscale surface modification strategy can be applied to stabilize the infrared emissivity of ZrB_(2)in a water-oxygen coupling environment.展开更多
Temperature-accelerated in vitro degradation was established to estimate the longevity of polyurethane applied for long-term implantation.However,the prediction did not correlate well with the data from clinical expla...Temperature-accelerated in vitro degradation was established to estimate the longevity of polyurethane applied for long-term implantation.However,the prediction did not correlate well with the data from clinical explants and the rationality of accelerated in vitro test is still in a controversial due to the deviation.To improve the accuracy of the in vitro prediction,the influence of hydrogen bonding(HB)on the accelerated hydrolysis of silicone based polyetherurethans(SPEUs)extended with three side chains.Combining the temperature-controlled FTIR and the physical properties after temperature-accelerated in vitro degradation,it was demonstrated that side chain could increase the degree of hydrogen bond dissociation at higher temperature,resulting in the decrease of the calculated activation energy(E_(a))of hydrolysis.At low temperatures,changes in surface morphology and molar mass of PEUs are minimal and HB are less easily dissociated,which had barely impact on the hydrolysis resistance.It was proposed that the E_(a) will not be impacted and that the accuracy of prediction will be increased if the acceleration temperature is lower than 70℃ and HB change is less than 15%.展开更多
High solid content CO_(2)-based cationic waterborne polyurethanes(CWPUs)were prepared using CO_(2)-polyols as soft segment and Nmethyl diethanolamine(MDEA)as hydrophilic group.The resulting stable aqueous dispersion d...High solid content CO_(2)-based cationic waterborne polyurethanes(CWPUs)were prepared using CO_(2)-polyols as soft segment and Nmethyl diethanolamine(MDEA)as hydrophilic group.The resulting stable aqueous dispersion displayed a high solid content of 52%with a low MDEA loading of 3.52 wt%.This novel structural CWPU can provide excellent adhesive strength,whose T-peel strength could reach 173.48N/5cm,20%higher than that of ester-based cationic waterborne polyurethane(87.55 N/5cm).The CO_(2)-based CWPU film showed only 2 wt%swelling percentage after 240 min immersion in water,and no change was observed during its immersion in 5 wt%sodium hydroxide solution.The tensile strength of CO_(2)-WPUs dropped slowly to 91.2%after 480 min immersion in a 5 wt%sodium hydroxide solution,whereas that of esterbased CWPUs dropped quickly to 32%after 240 min and their mechanical properties were lost after 360 min immersion.Meanwhile,the retention of the tensile strength of the CO_(2)-CWPUs was 81.5%even after 720 min immersion in 10 wt%H_(2)O_(2) solution,while it was only ca.38%for the ester-based CWPUs.These results indicated that the cationic CO_(2)-based CWPU may be promising waterborne adhesive with outstanding ageing resistance due to its synergistic effect from carbonate and ether groups of CO_(2)-polyol structure.展开更多
Aluminum nitride(AlN)is considered one of the most desirable materials for integrated circuits and electronic packaging substrates.However,raw AlN powder reacts easily with water,forming Al(OH)3 or AlOOH on the surfac...Aluminum nitride(AlN)is considered one of the most desirable materials for integrated circuits and electronic packaging substrates.However,raw AlN powder reacts easily with water,forming Al(OH)3 or AlOOH on the surface and hindering the development of an aqueous tape-casting process for preparing AlN ceramic substrates.In this study,hydrolyzed polymaleic anhydride(HPMA)was used to modify AlN powder,which has good water solubility and dispersibility.The AlN powder was modified with 5 wt%HPMA remained stable in water for at least 90 h under magnetic stirring condition and 24 h under ball milling condition,indicating that HPMA-modified AlN powder has good resistance to hydrolysis.The action mechanism of HPMA is revealed.Firstly,–COOH of the HPMA polymer and the oxide layer on the surface of the AlN powder underwent a dehydration condensation reaction to form a compound.Secondly,long chains of the polymer further coated the surface of the AlN powder,forming an anti-hydration layer with a thickness of about 7.0 nm on the surface of the AlN particles.In addition,AlN green sheets were successfully prepared by aqueous tape casting using the HPMA-modified AlN powder without additional dispersants.Subsequently,AlN ceramic substrates were obtained by sintering at 1750℃for 4 h under an N2 atmosphere with a pressure of 0.2 MPa.The relative density and thermal conductivity were tested to be 97.3%and 122 W/(m·K),respectively.展开更多
文摘This paper studies the structure and properties of the polycarbonate polyurethane epoxy resin (PCPU EP) blends being resistant to hydrolysis.The samples were analyzed by an infrared spectrometer,a differential scanning calorimeter,a scanning electron microscope and a dynamic viscoelastometer.The results show that PCPU EP blends have excellent resistance to hydrolysis and mechanical properties at the ratio of PCPU to EP equal to 10/100 (wt/wt).
基金the National Natural Science Foundation of China(Nos.52073123 and 51873082)the Distinguished Young Natural Science Foundation of Jiangsu Province(No.BK20200027)。
文摘Poly(glycolic acid)is a biocompatible as well as biocomposable polymer with superior mechanical and barrier properties and,consequently,has found important applications in both medical and packaging fields.However,the high hydrolysis rate in a high humidity environment restricts its application.In this work,a solid-state drawing process after melt extrusion is applied in order to produce fibrous PGA with enhanced mechanical properties and a much better resistance towards hydrolysis.The crystal structure of PGA gradually transformed from spherulites into oriented fibrous crystals in the stretching direction upon solid-state drawing.Meanwhile,both the length of microfibril and the size of lamellae increased initially with the drawing ratio(DR),while the chain-folded lamellae transformed into extended-chain fibrils at high(er)DR.The oriented structures lead to an overall improvement of the mechanical properties of PGA,e.g.,the tensile strength increased from 62.0±1.4 MPa to 910±54 MPa and the elongation at break increased from around 7%to 50%.Meanwhile,the heat capacity of totally mobile amorphous PGA(∆C_(p)^(0)=0.64 J·g^(−1)·℃^(−1))was reported for the first time,which was used to analyze the content of mobile amorphous fraction(XMAF)and rigid amorphous fraction(XRAF).Both the oriented chain-folded lamellae crystals and the tightly arranged RAF are beneficial to prevent water molecules from penetrating the matrix,thus improving the resistance towards hydrolysis.As a consequence,the fibrous PGA with a DR of 5 showed a tensile strength retention rate of 17.3%higher in comparison with the undrawn sample after 7-days accelerated hydrolysis.Therefore,this work provides a feasible method to improve the mechanical and resistance towards hydrolysis performance of PGA,which may broaden its application and prolong the shelf-life of PGA products.
基金financial support from the China Postdoctoral Science Foundation (No. 2022M712379, No. 2021M692401)National Natural Science Foundation of China (No. 32101470)+3 种基金Foundation (No. 2021KF37) of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control,College of Light Industry and Food Engineering, Guangxi UniversityFoundation of Tianjin Key Laboratory of Pulp & Paper of Tianjin University of Science & Technology (No. 202003, No. 202106)Research Foundation from the University of New BrunswickPost-Doctoral Fellow Programs from Zhejiang Jingxing Paper Co., Ltd
文摘Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be decomposed by microorganisms and could not be utilized,thereby resulting in severe resource wastage and environmental pollution.This study mainly explored the effects of biodegradation/hydrolysis conditions of the two types of starch substrates(native starch and enzymatically(α-amylase)hydrolyzed starch),which were treated via microorganism degradation within the simulated white water from OCC pulping system and their biodegradation products on the key properties were characterized via X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),and gel permeation chromatography(GPC)technologies.The effects of system temperature,pH value,starch concentration,and biodegradation time on starch biodegradation ratio and the characteristics of obtained biodegradated products from the two types of starches were studied.In addition,the effect ofα-amylase dosage on the biodegradation ratio of enzymatically hydrolyzed starch and its properties was investigated.It was found that the native starch presented a maximal degradation ratio at a system temperature of 55℃and pH value range of 5-7,respectively,the corresponding starch concentration within simulated white water system was 200 mg/L.Whereas the enzymatically hydrolyzed starch exhibited a highest degradation ratio at a system temperature of 50℃and pH value of 5.5,respectively,and the corresponding starch concentration within simulated white water system was 100 mg/L.It was verified that native starch is more readily bio-hydrolyzed and biodegradation-susceptive by microorganisms in simulated white water system of OCC pulping process,while the enzymatically hydrolyzed starch exhibits better biodegradation/hydrolysis resistance to the microbial degradation than that of native starch.This study provides a practical and interesting approach to investigate the starch hydrolysis or biodegradation behaviors in white water system of OCC pulping process,which would greatly contribute to the full recycling and valorized application of starch as a versatile additive during paperboard production.
基金financially supported by the National Natural Science Foundation of China(Nos.51802037 and 51972046)Sichuan Science and Technology Program(No.2020JDRC0045)
文摘Owing to its excellent high-temperature resistance and high conductivity,zirconium diboride(ZrB_(2)) has been applied as an infrared suppression coating.However,ZrB_(2)is susceptible to hydrolysis under high-moisture conditions and even under mild working temperatures.The improvement in the hydrophobicity of the ZrB_(2)surface effectively reduces wetting by water and suppresses hydrolysis reaction,particularly under high-temperature and high-moisture conditions.Herein,we report a novel,easy,and highly reproducible method for producing a fully coated ZrB_(2)surface by developing a nanoscale hydrophobic layer of glassy LaF_(3)on the surface of ZrB_(2)powder particles in situ(i.e.,during the carbothermal synthesis of ZrB_(2)).Through the tests carried out at 200 ℃for 100-300 h in a hydrothermal reactor,the produced powders displayed remarkably high long-term hydrolysis resistance and pronounced chemical stability.Compared with treated ZrB_(2),ZrB_(2)@LaF_(3)remained lower infrared emissivity when continuously intensifying hydrolyzation process.The results suggest that a nanoscale surface modification strategy can be applied to stabilize the infrared emissivity of ZrB_(2)in a water-oxygen coupling environment.
基金financially supported by the National Natural Science Foundation of China(No.51973134)the State Key Research Development Program of China(No.2020YFC1107000)+1 种基金the NSAF(No.U1930204)Interdisciplinary Innovation Projects of West China Hospital of Stomatology Sichuan University(No.RD-03-202001)。
文摘Temperature-accelerated in vitro degradation was established to estimate the longevity of polyurethane applied for long-term implantation.However,the prediction did not correlate well with the data from clinical explants and the rationality of accelerated in vitro test is still in a controversial due to the deviation.To improve the accuracy of the in vitro prediction,the influence of hydrogen bonding(HB)on the accelerated hydrolysis of silicone based polyetherurethans(SPEUs)extended with three side chains.Combining the temperature-controlled FTIR and the physical properties after temperature-accelerated in vitro degradation,it was demonstrated that side chain could increase the degree of hydrogen bond dissociation at higher temperature,resulting in the decrease of the calculated activation energy(E_(a))of hydrolysis.At low temperatures,changes in surface morphology and molar mass of PEUs are minimal and HB are less easily dissociated,which had barely impact on the hydrolysis resistance.It was proposed that the E_(a) will not be impacted and that the accuracy of prediction will be increased if the acceleration temperature is lower than 70℃ and HB change is less than 15%.
基金financially supported by the National Natural Science Foundation of China(No.32071686)。
文摘High solid content CO_(2)-based cationic waterborne polyurethanes(CWPUs)were prepared using CO_(2)-polyols as soft segment and Nmethyl diethanolamine(MDEA)as hydrophilic group.The resulting stable aqueous dispersion displayed a high solid content of 52%with a low MDEA loading of 3.52 wt%.This novel structural CWPU can provide excellent adhesive strength,whose T-peel strength could reach 173.48N/5cm,20%higher than that of ester-based cationic waterborne polyurethane(87.55 N/5cm).The CO_(2)-based CWPU film showed only 2 wt%swelling percentage after 240 min immersion in water,and no change was observed during its immersion in 5 wt%sodium hydroxide solution.The tensile strength of CO_(2)-WPUs dropped slowly to 91.2%after 480 min immersion in a 5 wt%sodium hydroxide solution,whereas that of esterbased CWPUs dropped quickly to 32%after 240 min and their mechanical properties were lost after 360 min immersion.Meanwhile,the retention of the tensile strength of the CO_(2)-CWPUs was 81.5%even after 720 min immersion in 10 wt%H_(2)O_(2) solution,while it was only ca.38%for the ester-based CWPUs.These results indicated that the cationic CO_(2)-based CWPU may be promising waterborne adhesive with outstanding ageing resistance due to its synergistic effect from carbonate and ether groups of CO_(2)-polyol structure.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52102101,52267001)the Natural Science Foundation of Jiangxi Province(No.20212BAB204019).
文摘Aluminum nitride(AlN)is considered one of the most desirable materials for integrated circuits and electronic packaging substrates.However,raw AlN powder reacts easily with water,forming Al(OH)3 or AlOOH on the surface and hindering the development of an aqueous tape-casting process for preparing AlN ceramic substrates.In this study,hydrolyzed polymaleic anhydride(HPMA)was used to modify AlN powder,which has good water solubility and dispersibility.The AlN powder was modified with 5 wt%HPMA remained stable in water for at least 90 h under magnetic stirring condition and 24 h under ball milling condition,indicating that HPMA-modified AlN powder has good resistance to hydrolysis.The action mechanism of HPMA is revealed.Firstly,–COOH of the HPMA polymer and the oxide layer on the surface of the AlN powder underwent a dehydration condensation reaction to form a compound.Secondly,long chains of the polymer further coated the surface of the AlN powder,forming an anti-hydration layer with a thickness of about 7.0 nm on the surface of the AlN particles.In addition,AlN green sheets were successfully prepared by aqueous tape casting using the HPMA-modified AlN powder without additional dispersants.Subsequently,AlN ceramic substrates were obtained by sintering at 1750℃for 4 h under an N2 atmosphere with a pressure of 0.2 MPa.The relative density and thermal conductivity were tested to be 97.3%and 122 W/(m·K),respectively.