We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration.Meanwhile, we define different instances of penetratio...We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration.Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.展开更多
The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of s...The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of standard SPH is replaced with anisotropic smoothing involving ellipsoidal kernels whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Using the ASPH, the anisotropic volume changes under strong shock condition are captured more accurately and clearly. The sophisticated features of meshless and Lagrangian nature inherent in the SPH method are kept for treating large deformations, large inhomogeneities and tracing free surfaces in the extremely transient impact process. A two-dimensional ASPH program is coded with C++. The developed hydrocode is examined for example problems of hypervelocity impacts of solid materials. The results obtained from the numerical simulation are compared with available experimental ones. Good agreement is observed.展开更多
文摘We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration.Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.
文摘The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of standard SPH is replaced with anisotropic smoothing involving ellipsoidal kernels whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Using the ASPH, the anisotropic volume changes under strong shock condition are captured more accurately and clearly. The sophisticated features of meshless and Lagrangian nature inherent in the SPH method are kept for treating large deformations, large inhomogeneities and tracing free surfaces in the extremely transient impact process. A two-dimensional ASPH program is coded with C++. The developed hydrocode is examined for example problems of hypervelocity impacts of solid materials. The results obtained from the numerical simulation are compared with available experimental ones. Good agreement is observed.