期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of compressibility on the hypervelocity penetration 被引量:6
1
作者 W.J.Song X.W.Chen P.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期82-98,共17页
We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration.Meanwhile, we define different instances of penetratio... We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration.Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency. 展开更多
关键词 COMPRESSIBILITY hypervelocity penetration Equation of state(EOS) SHOCKWAVE Bernoulli equation
下载PDF
Computational Simulation of Hypervelocity Penetration Using Adaptive SPH Method
2
作者 QIANG Hongfu MENG Lijun 《Transactions of Tianjin University》 EI CAS 2006年第B09期75-78,共4页
The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of s... The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of standard SPH is replaced with anisotropic smoothing involving ellipsoidal kernels whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Using the ASPH, the anisotropic volume changes under strong shock condition are captured more accurately and clearly. The sophisticated features of meshless and Lagrangian nature inherent in the SPH method are kept for treating large deformations, large inhomogeneities and tracing free surfaces in the extremely transient impact process. A two-dimensional ASPH program is coded with C++. The developed hydrocode is examined for example problems of hypervelocity impacts of solid materials. The results obtained from the numerical simulation are compared with available experimental ones. Good agreement is observed. 展开更多
关键词 adaptive SPH hypervelocity penetration meshfree method numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部