Estimating intercity vehicle emissions precisely would benefit collaborative control in multiple cities.Considering the variability of emissions caused by vehicles,roads,and traffic,the 24-hour change characteristics ...Estimating intercity vehicle emissions precisely would benefit collaborative control in multiple cities.Considering the variability of emissions caused by vehicles,roads,and traffic,the 24-hour change characteristics of air pollutants(CO,HC,NO_(X),PM_(2.5))on the intercity road network of Guangdong Province by vehicle categories and road links were revealed based on vehicle identity detection data in real-life traffic for each hour in July 2018.The results showed that the spatial diversity of emissions caused by the unbalanced economywas obvious.The vehicle emissions in the Pearl River Delta region(PRD)with a higher economic level were approximately 1–2 times those in the non-Pearl RiverDelta region(non-PRD).Provincial roads with high loads became potential sources of high emissions.Therefore,emission control policies must emphasize the PRD and key roads by travel guidance to achieve greater reduction.Gasoline passenger cars with a large proportion of traffic dominated morning and evening peaks in the 24-hour period and were the dominant contributors to CO and HC emissions,contributing more than 50%in the daytime(7:00–23:00)and higher than 26%at night(0:00–6:00).Diesel trucks made up 10%of traffic,but were the dominant player at night,contributed 50%–90%to NO_(X) and PM_(2.5) emissions,with amarked 24-hour change rule of more than 80%at night(23:00–5:00)and less than 60%during daytime.Therefore,targeted control measures by time-section should be set up on collaborative control.These findings provide time-varying decision support for variable vehicle emission control on a large scale.展开更多
基金supported by the Natural Science Foundation of China(No.U1811463,41975165)the National Key Research Program of China(No.2018YFB1601100)+1 种基金the Science Foundation Project of Guangdong(No.2019A1515010812)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(No.NY221125).
文摘Estimating intercity vehicle emissions precisely would benefit collaborative control in multiple cities.Considering the variability of emissions caused by vehicles,roads,and traffic,the 24-hour change characteristics of air pollutants(CO,HC,NO_(X),PM_(2.5))on the intercity road network of Guangdong Province by vehicle categories and road links were revealed based on vehicle identity detection data in real-life traffic for each hour in July 2018.The results showed that the spatial diversity of emissions caused by the unbalanced economywas obvious.The vehicle emissions in the Pearl River Delta region(PRD)with a higher economic level were approximately 1–2 times those in the non-Pearl RiverDelta region(non-PRD).Provincial roads with high loads became potential sources of high emissions.Therefore,emission control policies must emphasize the PRD and key roads by travel guidance to achieve greater reduction.Gasoline passenger cars with a large proportion of traffic dominated morning and evening peaks in the 24-hour period and were the dominant contributors to CO and HC emissions,contributing more than 50%in the daytime(7:00–23:00)and higher than 26%at night(0:00–6:00).Diesel trucks made up 10%of traffic,but were the dominant player at night,contributed 50%–90%to NO_(X) and PM_(2.5) emissions,with amarked 24-hour change rule of more than 80%at night(23:00–5:00)and less than 60%during daytime.Therefore,targeted control measures by time-section should be set up on collaborative control.These findings provide time-varying decision support for variable vehicle emission control on a large scale.