A novel FPGA-based pulse pile-up rejection method for single photon imaging detectors is reported. Tile method is easy to implement in FPGAs for real-time data processing. The rejection principle and entire design are...A novel FPGA-based pulse pile-up rejection method for single photon imaging detectors is reported. Tile method is easy to implement in FPGAs for real-time data processing. The rejection principle and entire design are introduced in detail. The photon counting imaging detector comprises a micro-channel plate (MCP) stack, and a wedge and strip anode (WSA). The resolution mask pattern in front of the MCP can be reconstructed after data processing in the FPGA. For high count rates, the rejection design can effectively reduce the impact of the pulse pile-up on the image. The resolution can reach up to 140μm. The pulse pile-up rejection design can also be applied to high-energy physics and particle detection.展开更多
In this paper, the limitations of the common method measuring intrinsic spatial resolution of the GEM imaging detector are presented. Through theoretical analysis and experimental verification, we have improved the co...In this paper, the limitations of the common method measuring intrinsic spatial resolution of the GEM imaging detector are presented. Through theoretical analysis and experimental verification, we have improved the common method to avoid these limitations. Using these improved methods, a more precise measurement of intrinsic spatial resolutions are obtained.展开更多
Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection...Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection and tracking system using the segmented planar imaging detector for electro-optical reconnaissance. This study realizes two operating modes by changing the working paired lenslets and corresponding waveguide arrays: a detection mode and a tracking mode. A model system was simulated and evaluated using the peak signal-to-noise ratio method. The simulation results indicate that the detection and tracking system can realize wide-field detection and narrow-field, multi-target, high-resolution tracking without moving parts.展开更多
This work aims at developing compact readout electronics for a compact imaging detector module with silicon photomultiplier (SPM) array. The detector module consists of a LYSO crystal array coupling with a SensL’s ...This work aims at developing compact readout electronics for a compact imaging detector module with silicon photomultiplier (SPM) array. The detector module consists of a LYSO crystal array coupling with a SensL’s 4×4 SPM array. A compact multiplexed readout based on a discretized positioning circuit (DPC) was developed to reduce the readout channels from 16 to 4 outputs. Different LYSO crystal arrays of 4×4, 8×8 and 12×12 with pixel sizes of 3.2, 1.6 and 1.0 mm respectively, have been tested with the compact readout board using a 137 Cs source. The initial results show that the compact imaging detector module with the compact multiplexed readout could clearly resolve 1 mm×1 mm×10 mm LYSO scintillation crystal array except those at the edges. The detector’s intrinsic spatial resolution up to 1 mm can be achieved with the 3 mm×3 mm size SPMArray4 through light sharing and compact multiplexed readout. Our results indicate that this detector module is feasible for the development of high-resolution compact PET.展开更多
Introduction THickGaseous Electron Multiplier(THGEM)has many advantages while the moderate position resolution is regarded as the main inferiority comparing with the traditional GEM,so this limits the applications of ...Introduction THickGaseous Electron Multiplier(THGEM)has many advantages while the moderate position resolution is regarded as the main inferiority comparing with the traditional GEM,so this limits the applications of THGEM,such as X-ray imaging and charge particle tracking.Materials and methods By improving the production techniques,THGEMs with smaller pitch and hole diameter can be made,i.e.,0.4 and 0.15 mm by mechanical drilling,and 0.3 and 0.1 mm by laser etching,respectively.Based on the new THGEMs,a two-dimensional imaging detector with 50×50mm sensitive area was developed for 0.1∼50 MeVlow-energy electrons detection and reaching better than 100μm position resolution(sigma).At the same time,a set of front-end electronics was developed based on homemade ASIC chips,i.e.,Charge Amplifier and Shaping Amplifier for GEM(CASAGEM),and applied successfully to the detector.Conclusion The X-ray and beam tests results indicate that both detector and Front End Electronics(FEE)worked well,and the position resolution achieved 74.9μm by using the charge center-of-gravity method.This indicates that the high-position resolution THGEM is promising for imaging and tracking application.展开更多
For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest p...For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest points is proposed to obtain the invariant local features, which is coined polynomial local orientation tensor(PLOT). The new detector is based on image local orientation tensor that is constructed from the polynomial expansion of image signal. Firstly, the properties of local orientation tensor of PLOT are analyzed, and a suitable tuning parameter of local orientation tensor is chosen so as to extract invariant features. The initial interest points are detected by local maxima search for the smaller eigenvalues of the orientation tensor. Then, an iterative procedure is used to allow the initial interest points to converge to affine invariant interest points and regions. The performances of this detector are evaluated on the repeatability criteria and recall versus 1-precision graphs, and then are compared with other existing approaches. Experimental results for PLOT show strong performance under affine transformation in the real-world conditions.展开更多
A 2D neutron detector based on 3He convertor and MWPC with an active area of 200 mmx200 mm has been successfully designed and fabricated. The detector has been tested with Am/Be neutron source and with collimated neut...A 2D neutron detector based on 3He convertor and MWPC with an active area of 200 mmx200 mm has been successfully designed and fabricated. The detector has been tested with Am/Be neutron source and with collimated neutron beam with the wavelength of λ=1.37A. The best spatial resolution of 1.18 mm (FWHM) and good linearity were obtained. This is in good agreement with theoretical calculations.展开更多
Edge detection is a fundamental issue in image analysis. This paper proposes multirate algorithms for efficient implementation of edge detector, and a design example is illustrated.The multirate (decimation and/or int...Edge detection is a fundamental issue in image analysis. This paper proposes multirate algorithms for efficient implementation of edge detector, and a design example is illustrated.The multirate (decimation and/or interpolation) signal processing algorithms can achieve considerable savings in computation and storage. The proposed algorithms result in mapping relations of their z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase decomposition counterparts.The mapping properties can be readily utilized to efficiently analyze and synthesize multirate edge detection filters. The Very high-speed Hardware Description Language (VHDL) simulation results verify efficiency of the algorithms for real-time Field Programmable Gate-Array (FPGA)implementation.展开更多
In this paper the design and implementation of Multi-Dimensional (MD) filter, particularly 3-Dimensional (3D) filter, are presented. Digital (discrete domain) filters applied to image and video signal processing using...In this paper the design and implementation of Multi-Dimensional (MD) filter, particularly 3-Dimensional (3D) filter, are presented. Digital (discrete domain) filters applied to image and video signal processing using the novel 3D multirate algorithms for efficient implementation of moving object extraction are engineered with an example. The multirate (decimation and/or interpolation) signal processing algorithms can achieve significant savings in computation and memory usage. The proposed algorithm uses the mapping relations of z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase de- composition counterparts. The mapping properties can be readily used to efficiently analyze and synthesize MD multirate filters.展开更多
The wide field of the Schmidt telescope implies a greater chance of the field containing bright objects, and the presence of a corrector lens produces a certain type of ghost images. We summarize and confirm the featu...The wide field of the Schmidt telescope implies a greater chance of the field containing bright objects, and the presence of a corrector lens produces a certain type of ghost images. We summarize and confirm the features of such ghost images in Schmidt CCD photometry. The ghost images could be star-like under special observational conditions. The zenith distance of the telescope, among other factors, is found to correlate with different patterns of the ghost images. Some relevant issues are discussed and possible applications of our results are suggested.展开更多
In recent years,two-dimensional metal halide perovskites(MHPs)have attracted increased attention for radiation detection and imaging.Their detection efficiencies are almost comparable to three-dimensional(3D)perovskit...In recent years,two-dimensional metal halide perovskites(MHPs)have attracted increased attention for radiation detection and imaging.Their detection efficiencies are almost comparable to three-dimensional(3D)perovskites.Meanwhile,they demonstrate superior stability to 3D perovskites.The pursuit of high-quality,phase-pure and lead-free two-dimensional MHP materials and large-area fabrication capability for x-ray detectors are among the research hotspots.In this review,we first give a brief introduction of the crystallographic structure,optoelectronic characteristics and preparation methods of high-quality two-dimensional perovskites.In addition,we overview the general working principles of direct and indirect x-ray detection processes and the corresponding performance metrics from the perspective of detection and imaging.Furthermore,we provide a comprehensive discussion on the recent advances in 2D perovskite x-ray detectors and imaging devices.Finally,we pinpoint several major obstacles of 2D x-ray detectors that should be overcome in the near future.展开更多
Introduction Pixel detectors fabricated with the silicon-on-insulator(SOI)technology suffered from the digital pickup,due to the capacitive coupling between the sensing electrode and the in-pixel circuit.In order to t...Introduction Pixel detectors fabricated with the silicon-on-insulator(SOI)technology suffered from the digital pickup,due to the capacitive coupling between the sensing electrode and the in-pixel circuit.In order to tackle this issue,an advanced process called double SOI has been developed.A prototype chip CPIXTEG3b adopting this new process was designed and characterized.While optimization concerning the double-SOI design and testing of the single pixel were already presented in a separate publication,this paper focuses on its noise performance of the full matrix and X-ray detection utilizing a synchrotron photon beam.Methods Equivalent noise charge(ENC)of the full pixel matrix was measured with electrical pulse tests.The threshold dispersion was minimized by the DAC tuning in each individual pixel.As a photon-counting X-ray imager,noise count accumulated up to 1 h was measured.Detection efficiency was measured with a micro-focused beam as well as a flat field generated by the X-ray scattering on a glassy carbon at the KEK PF beam line 14A.Results The typical ENC is 52 e−and the sigma of threshold dispersion is 10 e−over the full matrix.A merit of“zero”noise count is also demonstrated,which is consistent with the low ENC.The prototype chip has been tested with microbeam and used to measure the beam profile to be with a full width of 50µm at 2.4%of the maximum height.Both sensor depletion and charge sharing between neighboring pixels have been carefully characterized,providing insights for further development.The homogeneity of response to X-ray photons has been demonstrated in the flat field test.This work has drawn a final conclusion to the solution of digital pickup issue and opened a promising prospect in low-noise and high-resolution X-ray imaging.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11375179
文摘A novel FPGA-based pulse pile-up rejection method for single photon imaging detectors is reported. Tile method is easy to implement in FPGAs for real-time data processing. The rejection principle and entire design are introduced in detail. The photon counting imaging detector comprises a micro-channel plate (MCP) stack, and a wedge and strip anode (WSA). The resolution mask pattern in front of the MCP can be reconstructed after data processing in the FPGA. For high count rates, the rejection design can effectively reduce the impact of the pulse pile-up on the image. The resolution can reach up to 140μm. The pulse pile-up rejection design can also be applied to high-energy physics and particle detection.
基金Supported by Knowledge Innovation Program of Chinese Academy of Sciences
文摘In this paper, the limitations of the common method measuring intrinsic spatial resolution of the GEM imaging detector are presented. Through theoretical analysis and experimental verification, we have improved the common method to avoid these limitations. Using these improved methods, a more precise measurement of intrinsic spatial resolutions are obtained.
基金supported by the Foundation of Youth Innovation Promotion Association,Chinese Academy of Sciences(No.20150192)
文摘Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection and tracking system using the segmented planar imaging detector for electro-optical reconnaissance. This study realizes two operating modes by changing the working paired lenslets and corresponding waveguide arrays: a detection mode and a tracking mode. A model system was simulated and evaluated using the peak signal-to-noise ratio method. The simulation results indicate that the detection and tracking system can realize wide-field detection and narrow-field, multi-target, high-resolution tracking without moving parts.
基金Supported by National Natural Science Foundation of China (10875162, 1105209)
文摘This work aims at developing compact readout electronics for a compact imaging detector module with silicon photomultiplier (SPM) array. The detector module consists of a LYSO crystal array coupling with a SensL’s 4×4 SPM array. A compact multiplexed readout based on a discretized positioning circuit (DPC) was developed to reduce the readout channels from 16 to 4 outputs. Different LYSO crystal arrays of 4×4, 8×8 and 12×12 with pixel sizes of 3.2, 1.6 and 1.0 mm respectively, have been tested with the compact readout board using a 137 Cs source. The initial results show that the compact imaging detector module with the compact multiplexed readout could clearly resolve 1 mm×1 mm×10 mm LYSO scintillation crystal array except those at the edges. The detector’s intrinsic spatial resolution up to 1 mm can be achieved with the 3 mm×3 mm size SPMArray4 through light sharing and compact multiplexed readout. Our results indicate that this detector module is feasible for the development of high-resolution compact PET.
基金This work is a part of the development of Linear Electron Accelerator Test Beam Facility newly built in IHEP.This work is supported in part by National Natural Science Foundation of China(11205173,11305190)in part by the State Key Laboratory of Particle Detection and Electronics(H9294206TD).
文摘Introduction THickGaseous Electron Multiplier(THGEM)has many advantages while the moderate position resolution is regarded as the main inferiority comparing with the traditional GEM,so this limits the applications of THGEM,such as X-ray imaging and charge particle tracking.Materials and methods By improving the production techniques,THGEMs with smaller pitch and hole diameter can be made,i.e.,0.4 and 0.15 mm by mechanical drilling,and 0.3 and 0.1 mm by laser etching,respectively.Based on the new THGEMs,a two-dimensional imaging detector with 50×50mm sensitive area was developed for 0.1∼50 MeVlow-energy electrons detection and reaching better than 100μm position resolution(sigma).At the same time,a set of front-end electronics was developed based on homemade ASIC chips,i.e.,Charge Amplifier and Shaping Amplifier for GEM(CASAGEM),and applied successfully to the detector.Conclusion The X-ray and beam tests results indicate that both detector and Front End Electronics(FEE)worked well,and the position resolution achieved 74.9μm by using the charge center-of-gravity method.This indicates that the high-position resolution THGEM is promising for imaging and tracking application.
基金Projects(61203332,61203208) supported by the National Natural Science Foundation of China
文摘For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest points is proposed to obtain the invariant local features, which is coined polynomial local orientation tensor(PLOT). The new detector is based on image local orientation tensor that is constructed from the polynomial expansion of image signal. Firstly, the properties of local orientation tensor of PLOT are analyzed, and a suitable tuning parameter of local orientation tensor is chosen so as to extract invariant features. The initial interest points are detected by local maxima search for the smaller eigenvalues of the orientation tensor. Then, an iterative procedure is used to allow the initial interest points to converge to affine invariant interest points and regions. The performances of this detector are evaluated on the repeatability criteria and recall versus 1-precision graphs, and then are compared with other existing approaches. Experimental results for PLOT show strong performance under affine transformation in the real-world conditions.
基金supported by the National Natural Science Foundation of China(Grant No.11127508)
文摘A 2D neutron detector based on 3He convertor and MWPC with an active area of 200 mmx200 mm has been successfully designed and fabricated. The detector has been tested with Am/Be neutron source and with collimated neutron beam with the wavelength of λ=1.37A. The best spatial resolution of 1.18 mm (FWHM) and good linearity were obtained. This is in good agreement with theoretical calculations.
文摘Edge detection is a fundamental issue in image analysis. This paper proposes multirate algorithms for efficient implementation of edge detector, and a design example is illustrated.The multirate (decimation and/or interpolation) signal processing algorithms can achieve considerable savings in computation and storage. The proposed algorithms result in mapping relations of their z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase decomposition counterparts.The mapping properties can be readily utilized to efficiently analyze and synthesize multirate edge detection filters. The Very high-speed Hardware Description Language (VHDL) simulation results verify efficiency of the algorithms for real-time Field Programmable Gate-Array (FPGA)implementation.
基金Sponsored by SRF for ROCS, SEM. (No.2006699)Ningbo Natural Science Foundation (No.2006A610016).
文摘In this paper the design and implementation of Multi-Dimensional (MD) filter, particularly 3-Dimensional (3D) filter, are presented. Digital (discrete domain) filters applied to image and video signal processing using the novel 3D multirate algorithms for efficient implementation of moving object extraction are engineered with an example. The multirate (decimation and/or interpolation) signal processing algorithms can achieve significant savings in computation and memory usage. The proposed algorithm uses the mapping relations of z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase de- composition counterparts. The mapping properties can be readily used to efficiently analyze and synthesize MD multirate filters.
基金The work is partially supported by the Chinese National Natural Science Foundation under the grant No. 10073012The operation of the NAOC Schmidt telescope is supported by the Chinese Academy of Sciencesthe Chinese National Natural Science Foundation
文摘The wide field of the Schmidt telescope implies a greater chance of the field containing bright objects, and the presence of a corrector lens produces a certain type of ghost images. We summarize and confirm the features of such ghost images in Schmidt CCD photometry. The ghost images could be star-like under special observational conditions. The zenith distance of the telescope, among other factors, is found to correlate with different patterns of the ghost images. Some relevant issues are discussed and possible applications of our results are suggested.
基金supported by the National Natural Science Foundation of China(22279083)Natural Science Foundation of Guangdong Province(2019A1515010783)+1 种基金Guangzhou Science and Technology Planning Project(202102010443)Songshan Lake Materials Laboratory.
文摘In recent years,two-dimensional metal halide perovskites(MHPs)have attracted increased attention for radiation detection and imaging.Their detection efficiencies are almost comparable to three-dimensional(3D)perovskites.Meanwhile,they demonstrate superior stability to 3D perovskites.The pursuit of high-quality,phase-pure and lead-free two-dimensional MHP materials and large-area fabrication capability for x-ray detectors are among the research hotspots.In this review,we first give a brief introduction of the crystallographic structure,optoelectronic characteristics and preparation methods of high-quality two-dimensional perovskites.In addition,we overview the general working principles of direct and indirect x-ray detection processes and the corresponding performance metrics from the perspective of detection and imaging.Furthermore,we provide a comprehensive discussion on the recent advances in 2D perovskite x-ray detectors and imaging devices.Finally,we pinpoint several major obstacles of 2D x-ray detectors that should be overcome in the near future.
基金This work is supported by the National Nature Science Foundation of China,Grant Nos.11375226 and 11575220.
文摘Introduction Pixel detectors fabricated with the silicon-on-insulator(SOI)technology suffered from the digital pickup,due to the capacitive coupling between the sensing electrode and the in-pixel circuit.In order to tackle this issue,an advanced process called double SOI has been developed.A prototype chip CPIXTEG3b adopting this new process was designed and characterized.While optimization concerning the double-SOI design and testing of the single pixel were already presented in a separate publication,this paper focuses on its noise performance of the full matrix and X-ray detection utilizing a synchrotron photon beam.Methods Equivalent noise charge(ENC)of the full pixel matrix was measured with electrical pulse tests.The threshold dispersion was minimized by the DAC tuning in each individual pixel.As a photon-counting X-ray imager,noise count accumulated up to 1 h was measured.Detection efficiency was measured with a micro-focused beam as well as a flat field generated by the X-ray scattering on a glassy carbon at the KEK PF beam line 14A.Results The typical ENC is 52 e−and the sigma of threshold dispersion is 10 e−over the full matrix.A merit of“zero”noise count is also demonstrated,which is consistent with the low ENC.The prototype chip has been tested with microbeam and used to measure the beam profile to be with a full width of 50µm at 2.4%of the maximum height.Both sensor depletion and charge sharing between neighboring pixels have been carefully characterized,providing insights for further development.The homogeneity of response to X-ray photons has been demonstrated in the flat field test.This work has drawn a final conclusion to the solution of digital pickup issue and opened a promising prospect in low-noise and high-resolution X-ray imaging.