A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI dat...A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following pro...Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.展开更多
Additive manufacturing (AM) technology such as selective laser melting (SLM) often produces a high refection phenomenon that makes defect detection and information extraction challenging. Meanwhile, it is essential to...Additive manufacturing (AM) technology such as selective laser melting (SLM) often produces a high refection phenomenon that makes defect detection and information extraction challenging. Meanwhile, it is essential to establish a characterization method for defect analysis to provide sufcient information for process diagnosis and optimization. However, there is still a lack of universal standards for the characterization of defects in SLM parts. In this study, a polarization-based imaging system was proposed, and a set of characterization parameters for SLM defects was established. The contrast, defect contour information, and high refection suppression efect of the SLM part defects were analyzed. Comparative analysis was conducted on defect characterization parameters, including geometric and texture parameters. The experimental results demonstrated the efects of the polarization imaging system and verifed the feasibility of the defect feature extraction and characterization method. The research work provides an efective solution for defect detection and helps to establish a universal standard for defect characterization in additive manufacturing.展开更多
Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imagi...Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.展开更多
Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent com...Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.展开更多
Objective and Impact Statement:We developed a generalized computational approach to design uniform,high-intensity excitation light for low-cost,quantitative fluorescence imaging of in vitro,ex vivo,and in vivo samples...Objective and Impact Statement:We developed a generalized computational approach to design uniform,high-intensity excitation light for low-cost,quantitative fluorescence imaging of in vitro,ex vivo,and in vivo samples with a single device.Introduction:Fluorescence imaging is a ubiquitous tool for biomedical applications.Researchers extensively modify existing systems for tissue imaging,increasing the time and effort needed for translational research and thick tissue imaging.These modifications are applicationspecific,requiring new designs to scale across sample types.Methods:We implemented a computational model to simulate light propagation from multiple sources.Using a global optimization algorithm and a custom cost function,we determined the spatial positioning of optical fibers to generate 2 illumination profiles.These results were implemented to image core needle biopsies,preclinical mammary tumors,or tumor-derived organoids.Samples were stained with molecular probes and imaged with uniform and nonuniform illumination.Results:Simulation results were faithfully translated to benchtop systems.We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings.The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model.Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used.Conclusion:We demonstrate the significance of using a computationally designed illumination for in vitro,ex vivo,and in vivo fluorescence imaging.Applicationspecific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features.This approach is generalizable across light sources,biological applications,and detectors.展开更多
Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing sect...Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing section.This system studied the 2charge-coupled device(CCD)camera(AD-080CL)of the JAI company.Fusion algorithm of visible light and near infrared images was designed for the fluorescence imaging system with wavelet transform image fusion algorithm.In order to enhance the fluorescent moiety of the fusion image,the luminance value of the green component of the color image was changed.And using microsoft foundation classes(MFC)application architecture,the supporting software system was bulit in VS2010 environment.展开更多
A mathematical model of quantum noise having much effect on the low light imaging system is set up. To simulate the quantum noise, the random numbers obeying noise distribution must be formed and are weighted on the...A mathematical model of quantum noise having much effect on the low light imaging system is set up. To simulate the quantum noise, the random numbers obeying noise distribution must be formed and are weighted on the basis of the model created. Three uniform random sequences are built by the linear congruential method, of which two are used to form integer number and decimal fraction parts of the new random sequence respectively and the third to shuffle the new sequence. And then a Gauss sequence is formed out of uniform distribution by a function transforming method. It actualizes the simulation in real time of quantum noise in the low light imaging system, where video flow is extracted in real time, the noise summed up and played back side by side with the original video signs by a simulation software.展开更多
Identification and counting of rice light-trap pests are important to monitor rice pest population dynamics and make pest forecast. Identification and counting of rice light-trap pests manually is time-consuming, and ...Identification and counting of rice light-trap pests are important to monitor rice pest population dynamics and make pest forecast. Identification and counting of rice light-trap pests manually is time-consuming, and leads to fatigue and an increase in the error rate. A rice light-trap insect imaging system is developed to automate rice pest identification. This system can capture the top and bottom images of each insect by two cameras to obtain more image features. A method is proposed for removing the background by color difference of two images with pests and non-pests. 156 features including color, shape and texture features of each pest are extracted into an support vector machine (SVM) classifier with radial basis kernel function. The seven-fold cross-validation is used to improve the accurate rate of pest identification. Four species of Lepidoptera rice pests are tested and achieved 97.5% average accurate rate.展开更多
To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette...To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette scanning sub images more effectively. It can restore the original area and shape of an object effectively, and keep the energy information of the object. To process sub images got by a rosette scanning system, morphological filter is more effective than traditional low pass filter.展开更多
AIM: To report the surgical result of pars plana vitrectomy(PPV) with air tamponade for rhegmatogenous retinal detachment(RRD) by ultra-widefield fundus imaging system. METHODS: Of 25 consecutive patients(25 e...AIM: To report the surgical result of pars plana vitrectomy(PPV) with air tamponade for rhegmatogenous retinal detachment(RRD) by ultra-widefield fundus imaging system. METHODS: Of 25 consecutive patients(25 eyes) with fresh primary RRD and causative retinal break and vitreous traction were presented. All the patients underwent PPV with air tamponade. Visual acuity(VA) was examined postoperatively and images were captured by ultrawidefield scanning laser ophthalmoscope system(Optos). RESULTS: Initial reattachment was achieved in 25 cases(100%). The air volume was 〉60% on the postoperative day(POD) 1. The ultra-widefield images showed that the retina was reattached in all air-filled eyes postoperatively. The retinal break and laser burns in the superior were detected in 22 of 25 eyes(88%). A missed retinal hole was found under intravitreal air bubble in 1 case(4%). The air volume was range from 40% to 60% on POD 3. A doublelayered image was seen in 25 of 25 eyes with intravitreal gas. Retinal breaks and laser burns around were seen in the intravitreal air. On POD 7, small bubble without effect was seen in 6 cases(24%) and bubble was completely disappeared in 4 cases(16%). Small oval bubble in the superior area was observed in 15 cases(60%). There were no missed and new retinal breaks and no retinal detachment in all cases on the POD 14 and 1 mo and last follow-up. Air disappeared completely on a mean of 9.84 d postoperatively. The mean final postoperative bestcorrected visual acuity(BCVA) was 0.35 log MAR. Mean final postoperative BCVA improved significantly relative to mean preoperative(P〈0.05). Final VA of 0.3 log MAR or better was seen in 13 eyes. CONCLUSION: PPV with air tamponade is an effective management for fresh RRD with superior retinal breaks. The ultra-widefield fundus imaging can detect postoperative retinal breaks in air-filled eyes. It would be a useful facility for follow-up after PPV with air tamponade. Facedown position and acquired visual rehabilitation may be shorten.展开更多
A novel portable infrared imaging system based on uncooled focal plane array and programmable system-on-chip(SoC)was proposed.The latest Xilinx Zynq-7000 was used to integrate the main part of the system into a sing...A novel portable infrared imaging system based on uncooled focal plane array and programmable system-on-chip(SoC)was proposed.The latest Xilinx Zynq-7000 was used to integrate the main part of the system into a single SoC.Parallel arithmetic units and digital modules were implemented on the programmable logic(PL)of Zynq-7000 to decrease system size and ensure the real-time p nonuniformity correction,while programs running on the processing system(PS)of Zynq-7000 controlled the system work flow and provided human-machine interfaces using open-source software such as Linux and OpenCV.Meanwhile,industry standard advanced extendable interface(AXI)buses were adopted to encapsulating standardized IP cores and build high speed data exchange bridges between units within Zynq-7000.Test results indicate that the image quality and real-time performance of the system can meet application requirements.And it provided a more flexible and extendable solution for evaluating and deploying infrared image enhancement and nonuniformity correction algorithms.展开更多
Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics, Recent advancements in materials science, mechanics, and stretchable electronics have led ...Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics, Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates.展开更多
The reasons why thermal imaging systems consume power are analyzed,and a low power consumption design scheme is presented for the thermal imaging systems operating at multiple temperatures. The relation between the re...The reasons why thermal imaging systems consume power are analyzed,and a low power consumption design scheme is presented for the thermal imaging systems operating at multiple temperatures. The relation between the response performance of α-Si microbolometer detector and its operating temperature is studied by means of formulas of microbolometer detector's noise equivalent temperature difference(NETD) and detectivity. Numerical analysis based on true parameters demonstrates that the detectivity decreases slightly and NETD increases slightly when operating temperature rises,which indicates that α-Si microbolometer detector has approximately uniform response in a wide operating temperature range. According to these analyses,a thermal imaging system operating at multiple temperatures is designed. The power of thermoelectric stabilizer(TEC) is less than 350 mW and NETD is less than 120 mK in the ambient temperature range of-40 ℃-60 ℃,which shows that this system not only outputs high-quality images but consumes low power.展开更多
A single-image passive ranging and three-dimensional(3 D)imaging system with chiral phase encoding was proposed in 2011[Opt.Lett.36,115(2011)].A new theoretical analysis of the system in space domain is presented in t...A single-image passive ranging and three-dimensional(3 D)imaging system with chiral phase encoding was proposed in 2011[Opt.Lett.36,115(2011)].A new theoretical analysis of the system in space domain is presented in this paper.We deduce the analytic relationships between the object distance and the point spread function,and between the object distance and the encoded image,respectively.Both the point spread function and the processed spectrum of the encoded image have two spots,which will rotate with the variation of the object distance.Then the depth map is extracted from the encoded image and it can be used to set up 3 D images.The theoretical analysis is verified by a wavefront coding system with a chiral phase which is generated by a phase-only liquid-crystal spatial light modulator.The phase generated by the liquid-crystal spatial light modulator is more flexible than the fixed phase mask and can be adjusted in real time.It is especially suitable for observing the object with a large depth of field.展开更多
In vivo imaging system (IVIS) is a new and rapidly expanding technology, which has a wide range of applications in life science such as cell tracing. By counting the number of photons emitted from a specimen, IVIS can...In vivo imaging system (IVIS) is a new and rapidly expanding technology, which has a wide range of applications in life science such as cell tracing. By counting the number of photons emitted from a specimen, IVIS can quantify biological events such as tumor growth. We used B16F10-luc-G5 tumor cells and 20 Babl/C mice injected subcutaneously with B16F10-luc-G5 tumor cells (1×106 in 100 μL) to develop a method to quantitatively analyze cells traced by IVIS in vitro and in vivo, respectively. The results showed a strong correlation between the number of tumor cells and the intensity of bioluminescence signal (R2=0.99) under different exposure conditions in in vitro assay. The results derived from the in vivo experiments showed that tumor luminescence was observed in all mice by IVIS at all days, and there was significant difference (P<0.01) between every two days from day 3 to day 14. Moreover, tumor dynamic morphology could be monitored by IVIS when it was in- visible. There was a strong correlation between tumor volume and bioluminescence signal (R2=0.97) by IVIS. In summary, we demonstrated a way to accurately carry out the quantitative analysis of cells using IVIS both in vitro and in vivo. The data indicate that IVIS can be used as an effective and quantitative method for cell tracing both in vitro and in vivo.展开更多
We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost image...We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost images of two detected objects with longitudinal distance less than the depth of field can be achieved simultaneously. The longitudinal coherence scale of the thermal light lensless ghost imaging determines the depth of field. Theoretical analysis can well explain the experimental results.展开更多
Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscan...Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect.展开更多
AIM:To evaluate the efficacy of computer-assisted color analysis of colorectal lesions using a novel auto-fluorescence imaging(AFI)system to distinguish neoplastic lesions from non-neoplastic lesions and to predict th...AIM:To evaluate the efficacy of computer-assisted color analysis of colorectal lesions using a novel auto-fluorescence imaging(AFI)system to distinguish neoplastic lesions from non-neoplastic lesions and to predict the depth of invasion.METHODS:From January 2013 to April 2013,consecutive patients with known polyps greater than 5 mm in size who were scheduled to undergo endoscopic treatment at The Jikei University Hospital were prospectively recruited for this study.All lesions were evaluated using a novel AFI system,and color-tone sampling was performed in a region of interest determined from narrow band imaging or from chromoendoscopy findings without magnification.The green/red(G/R)ratio for each lesion on the AFI images was calculated automatically using a computer-assisted color analysis system that permits real-time color analysis during endoscopic procedures.RESULTS:A total of 88 patients with 163 lesions were enrolled in this study.There were significant differences in the G/R ratios of hyperplastic polyps(non-neoplastic lesions),adenoma/intramucosal cancer/submucosal(SM)superficial cancer,and SM deep cancer(P<0.0001).The mean±SD G/R ratios were 0.984±0.118in hyperplastic polyps and 0.827±0.081 in neoplastic lesions.The G/R ratios of hyperplastic polyps were significantly higher than those of neoplastic lesions(P<0.001).When a G/R ratio cut-off value of>0.89 was applied to determine non-neoplastic lesions,the sensitivity,specificity,positive predictive value(PPV),negative predictive value(NPV),and accuracy were 83.9%,82.6%,53.1%,95.6%and 82.8%,respectively.For neoplastic lesions,the mean G/R ratio was 0.834±0.080 in adenoma/intramucosal cancer/SM superficial cancer and 0.746±0.045 in SM deep cancer.The G/R ratio of adenoma/intramucosal cancer/SM superficial cancer was significantly higher than that of SM deep cancer(P<0.01).When a G/R ratio cut-off value of<0.77 was applied to distinguish SM deep cancers,the sensitivity,specificity,PPV,NPV,and accuracy were80.0%,84.4%,29.6%,98.1%and 84.1%,respectively.CONCLUSION:The novel AFI system with color analysis was effective in distinguishing non-neoplastic lesions from neoplastic lesions and might allow determination of the depth of invasion.展开更多
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003)National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271)+2 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences(No.2021HSC-CIP019)the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences(Nos.2021HSC-UE014 and 2021HSCUE012)。
文摘A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
基金Project supported by the National Key R&D Program of China(Grant No.SKLA02020001A05)。
文摘Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.
基金Supported by National Natural Science Foundation of China(Grant No.52075100)Shanghai Municipal Science and Technology Committee Innovation Program(Grant No.23ZR1404200).
文摘Additive manufacturing (AM) technology such as selective laser melting (SLM) often produces a high refection phenomenon that makes defect detection and information extraction challenging. Meanwhile, it is essential to establish a characterization method for defect analysis to provide sufcient information for process diagnosis and optimization. However, there is still a lack of universal standards for the characterization of defects in SLM parts. In this study, a polarization-based imaging system was proposed, and a set of characterization parameters for SLM defects was established. The contrast, defect contour information, and high refection suppression efect of the SLM part defects were analyzed. Comparative analysis was conducted on defect characterization parameters, including geometric and texture parameters. The experimental results demonstrated the efects of the polarization imaging system and verifed the feasibility of the defect feature extraction and characterization method. The research work provides an efective solution for defect detection and helps to establish a universal standard for defect characterization in additive manufacturing.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302)Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 202122012)。
文摘Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.
文摘Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.
基金This work was supported by generous funding from the National Institutes of Health grant(5R01EB028148-02)(N.R.)the Department of Defense National Defense Science and Engineering Graduate Fellowship Program(R.J.D.)the Doctoral Scholarship by Duke Global Health Institute(R.W.)。
文摘Objective and Impact Statement:We developed a generalized computational approach to design uniform,high-intensity excitation light for low-cost,quantitative fluorescence imaging of in vitro,ex vivo,and in vivo samples with a single device.Introduction:Fluorescence imaging is a ubiquitous tool for biomedical applications.Researchers extensively modify existing systems for tissue imaging,increasing the time and effort needed for translational research and thick tissue imaging.These modifications are applicationspecific,requiring new designs to scale across sample types.Methods:We implemented a computational model to simulate light propagation from multiple sources.Using a global optimization algorithm and a custom cost function,we determined the spatial positioning of optical fibers to generate 2 illumination profiles.These results were implemented to image core needle biopsies,preclinical mammary tumors,or tumor-derived organoids.Samples were stained with molecular probes and imaged with uniform and nonuniform illumination.Results:Simulation results were faithfully translated to benchtop systems.We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings.The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model.Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used.Conclusion:We demonstrate the significance of using a computationally designed illumination for in vitro,ex vivo,and in vivo fluorescence imaging.Applicationspecific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features.This approach is generalizable across light sources,biological applications,and detectors.
基金National Natural Science Foundation of China(No.61171177)National Major Scientific Equipment Development Projects of China(No.2013YQ240803)+1 种基金Natural Science Foundation for Young Scientists of Shanxi Province(No.2012021011-1)Scientific and Technological Project in Shanxi Province(No.20140321010-02)
文摘Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing section.This system studied the 2charge-coupled device(CCD)camera(AD-080CL)of the JAI company.Fusion algorithm of visible light and near infrared images was designed for the fluorescence imaging system with wavelet transform image fusion algorithm.In order to enhance the fluorescent moiety of the fusion image,the luminance value of the green component of the color image was changed.And using microsoft foundation classes(MFC)application architecture,the supporting software system was bulit in VS2010 environment.
文摘A mathematical model of quantum noise having much effect on the low light imaging system is set up. To simulate the quantum noise, the random numbers obeying noise distribution must be formed and are weighted on the basis of the model created. Three uniform random sequences are built by the linear congruential method, of which two are used to form integer number and decimal fraction parts of the new random sequence respectively and the third to shuffle the new sequence. And then a Gauss sequence is formed out of uniform distribution by a function transforming method. It actualizes the simulation in real time of quantum noise in the low light imaging system, where video flow is extracted in real time, the noise summed up and played back side by side with the original video signs by a simulation software.
基金support of the National Natural Science Foundation of China (31071678)the Major Scientific and Technological Special of Zhejiang Province, China (2010C12026)+1 种基金the Ningbo Science and Technology Project, China (201002C1011001)Xiangshan Science and Technology Project, China(2010C0001)
文摘Identification and counting of rice light-trap pests are important to monitor rice pest population dynamics and make pest forecast. Identification and counting of rice light-trap pests manually is time-consuming, and leads to fatigue and an increase in the error rate. A rice light-trap insect imaging system is developed to automate rice pest identification. This system can capture the top and bottom images of each insect by two cameras to obtain more image features. A method is proposed for removing the background by color difference of two images with pests and non-pests. 156 features including color, shape and texture features of each pest are extracted into an support vector machine (SVM) classifier with radial basis kernel function. The seven-fold cross-validation is used to improve the accurate rate of pest identification. Four species of Lepidoptera rice pests are tested and achieved 97.5% average accurate rate.
文摘To restore the sub image in a rosette scanning system and provide target recognition system with a low distorted image, the sub image is processed with morphological filters. Morphological filter can process rosette scanning sub images more effectively. It can restore the original area and shape of an object effectively, and keep the energy information of the object. To process sub images got by a rosette scanning system, morphological filter is more effective than traditional low pass filter.
文摘AIM: To report the surgical result of pars plana vitrectomy(PPV) with air tamponade for rhegmatogenous retinal detachment(RRD) by ultra-widefield fundus imaging system. METHODS: Of 25 consecutive patients(25 eyes) with fresh primary RRD and causative retinal break and vitreous traction were presented. All the patients underwent PPV with air tamponade. Visual acuity(VA) was examined postoperatively and images were captured by ultrawidefield scanning laser ophthalmoscope system(Optos). RESULTS: Initial reattachment was achieved in 25 cases(100%). The air volume was 〉60% on the postoperative day(POD) 1. The ultra-widefield images showed that the retina was reattached in all air-filled eyes postoperatively. The retinal break and laser burns in the superior were detected in 22 of 25 eyes(88%). A missed retinal hole was found under intravitreal air bubble in 1 case(4%). The air volume was range from 40% to 60% on POD 3. A doublelayered image was seen in 25 of 25 eyes with intravitreal gas. Retinal breaks and laser burns around were seen in the intravitreal air. On POD 7, small bubble without effect was seen in 6 cases(24%) and bubble was completely disappeared in 4 cases(16%). Small oval bubble in the superior area was observed in 15 cases(60%). There were no missed and new retinal breaks and no retinal detachment in all cases on the POD 14 and 1 mo and last follow-up. Air disappeared completely on a mean of 9.84 d postoperatively. The mean final postoperative bestcorrected visual acuity(BCVA) was 0.35 log MAR. Mean final postoperative BCVA improved significantly relative to mean preoperative(P〈0.05). Final VA of 0.3 log MAR or better was seen in 13 eyes. CONCLUSION: PPV with air tamponade is an effective management for fresh RRD with superior retinal breaks. The ultra-widefield fundus imaging can detect postoperative retinal breaks in air-filled eyes. It would be a useful facility for follow-up after PPV with air tamponade. Facedown position and acquired visual rehabilitation may be shorten.
文摘A novel portable infrared imaging system based on uncooled focal plane array and programmable system-on-chip(SoC)was proposed.The latest Xilinx Zynq-7000 was used to integrate the main part of the system into a single SoC.Parallel arithmetic units and digital modules were implemented on the programmable logic(PL)of Zynq-7000 to decrease system size and ensure the real-time p nonuniformity correction,while programs running on the processing system(PS)of Zynq-7000 controlled the system work flow and provided human-machine interfaces using open-source software such as Linux and OpenCV.Meanwhile,industry standard advanced extendable interface(AXI)buses were adopted to encapsulating standardized IP cores and build high speed data exchange bridges between units within Zynq-7000.Test results indicate that the image quality and real-time performance of the system can meet application requirements.And it provided a more flexible and extendable solution for evaluating and deploying infrared image enhancement and nonuniformity correction algorithms.
基金support from ACS Petroleum Research Fund(Grant No.53780-DNI7)NSF(Grant No.CMMI-1405355)
文摘Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics, Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates.
文摘The reasons why thermal imaging systems consume power are analyzed,and a low power consumption design scheme is presented for the thermal imaging systems operating at multiple temperatures. The relation between the response performance of α-Si microbolometer detector and its operating temperature is studied by means of formulas of microbolometer detector's noise equivalent temperature difference(NETD) and detectivity. Numerical analysis based on true parameters demonstrates that the detectivity decreases slightly and NETD increases slightly when operating temperature rises,which indicates that α-Si microbolometer detector has approximately uniform response in a wide operating temperature range. According to these analyses,a thermal imaging system operating at multiple temperatures is designed. The power of thermoelectric stabilizer(TEC) is less than 350 mW and NETD is less than 120 mK in the ambient temperature range of-40 ℃-60 ℃,which shows that this system not only outputs high-quality images but consumes low power.
基金Project supported by the National Natural Science Foundation of China(Grant No.61205158)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY15F050013)
文摘A single-image passive ranging and three-dimensional(3 D)imaging system with chiral phase encoding was proposed in 2011[Opt.Lett.36,115(2011)].A new theoretical analysis of the system in space domain is presented in this paper.We deduce the analytic relationships between the object distance and the point spread function,and between the object distance and the encoded image,respectively.Both the point spread function and the processed spectrum of the encoded image have two spots,which will rotate with the variation of the object distance.Then the depth map is extracted from the encoded image and it can be used to set up 3 D images.The theoretical analysis is verified by a wavefront coding system with a chiral phase which is generated by a phase-only liquid-crystal spatial light modulator.The phase generated by the liquid-crystal spatial light modulator is more flexible than the fixed phase mask and can be adjusted in real time.It is especially suitable for observing the object with a large depth of field.
基金supported by a grant from the National Natural Sciences Foundation of China (No. 30901364)grants from the National Basic Research Program of China (No. 2003CB515505, 2009CB522407)
文摘In vivo imaging system (IVIS) is a new and rapidly expanding technology, which has a wide range of applications in life science such as cell tracing. By counting the number of photons emitted from a specimen, IVIS can quantify biological events such as tumor growth. We used B16F10-luc-G5 tumor cells and 20 Babl/C mice injected subcutaneously with B16F10-luc-G5 tumor cells (1×106 in 100 μL) to develop a method to quantitatively analyze cells traced by IVIS in vitro and in vivo, respectively. The results showed a strong correlation between the number of tumor cells and the intensity of bioluminescence signal (R2=0.99) under different exposure conditions in in vitro assay. The results derived from the in vivo experiments showed that tumor luminescence was observed in all mice by IVIS at all days, and there was significant difference (P<0.01) between every two days from day 3 to day 14. Moreover, tumor dynamic morphology could be monitored by IVIS when it was in- visible. There was a strong correlation between tumor volume and bioluminescence signal (R2=0.97) by IVIS. In summary, we demonstrated a way to accurately carry out the quantitative analysis of cells using IVIS both in vitro and in vivo. The data indicate that IVIS can be used as an effective and quantitative method for cell tracing both in vitro and in vivo.
基金Supported by the Beijing Natural Science Foundation under Grant No 4133086the Fundamental Research Funds for th Central Universities under Grant No 2-9-2014-022
文摘We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost images of two detected objects with longitudinal distance less than the depth of field can be achieved simultaneously. The longitudinal coherence scale of the thermal light lensless ghost imaging determines the depth of field. Theoretical analysis can well explain the experimental results.
基金Supported by the National Natural Science Foundation of China(NSFC 61501396)the Colleges and Universities under the Science and Technology Research Projects of Hebei Province(QN2015021)
文摘Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect.
文摘AIM:To evaluate the efficacy of computer-assisted color analysis of colorectal lesions using a novel auto-fluorescence imaging(AFI)system to distinguish neoplastic lesions from non-neoplastic lesions and to predict the depth of invasion.METHODS:From January 2013 to April 2013,consecutive patients with known polyps greater than 5 mm in size who were scheduled to undergo endoscopic treatment at The Jikei University Hospital were prospectively recruited for this study.All lesions were evaluated using a novel AFI system,and color-tone sampling was performed in a region of interest determined from narrow band imaging or from chromoendoscopy findings without magnification.The green/red(G/R)ratio for each lesion on the AFI images was calculated automatically using a computer-assisted color analysis system that permits real-time color analysis during endoscopic procedures.RESULTS:A total of 88 patients with 163 lesions were enrolled in this study.There were significant differences in the G/R ratios of hyperplastic polyps(non-neoplastic lesions),adenoma/intramucosal cancer/submucosal(SM)superficial cancer,and SM deep cancer(P<0.0001).The mean±SD G/R ratios were 0.984±0.118in hyperplastic polyps and 0.827±0.081 in neoplastic lesions.The G/R ratios of hyperplastic polyps were significantly higher than those of neoplastic lesions(P<0.001).When a G/R ratio cut-off value of>0.89 was applied to determine non-neoplastic lesions,the sensitivity,specificity,positive predictive value(PPV),negative predictive value(NPV),and accuracy were 83.9%,82.6%,53.1%,95.6%and 82.8%,respectively.For neoplastic lesions,the mean G/R ratio was 0.834±0.080 in adenoma/intramucosal cancer/SM superficial cancer and 0.746±0.045 in SM deep cancer.The G/R ratio of adenoma/intramucosal cancer/SM superficial cancer was significantly higher than that of SM deep cancer(P<0.01).When a G/R ratio cut-off value of<0.77 was applied to distinguish SM deep cancers,the sensitivity,specificity,PPV,NPV,and accuracy were80.0%,84.4%,29.6%,98.1%and 84.1%,respectively.CONCLUSION:The novel AFI system with color analysis was effective in distinguishing non-neoplastic lesions from neoplastic lesions and might allow determination of the depth of invasion.