Nasopharyngeal carcinoma (NPC) is a common cancer in Southern China and Southeast Asia. The disease is a poorly differentiated carcinoma without effective cure, and the mechanism underlying its development remains l...Nasopharyngeal carcinoma (NPC) is a common cancer in Southern China and Southeast Asia. The disease is a poorly differentiated carcinoma without effective cure, and the mechanism underlying its development remains largely unknown. Of several factors identified in NPC aetiology in recent years, Epstein-Barr virus (EBV) infection has emerged to be most important. In almost all NPC cells, EBV uses several intracellular mechanisms to cause oncogenic evolution of the infected cells. One such mechanism by which EBV infection induces cellular immortalization is believed to be through the activation of telomerase, an enzyme that is normally repressed but becomes activated during cancer development. Studies show that greater than 85% of primary NPC display high telomerase activity by mechanisms involving EBV infection, consistent with the notion that EBV is commonly involved in inducing cell immortalization. More recently, different EBV proteins have been shown to activate or inhibit the human telomerase reverse transcriptase gene, by modulating intracellular signalling pathways. These findings suggest a new model with a number of challenges towards our understanding, molecular targeting and therapeutic intervention in NPC.展开更多
AIM: To establish a method for the reversible immortalization of human hepatocytes, which may offer a good and safe source of hepatocytes for practical applications.
Objective: To establish normally conditionally-immortalized human umbilical vein endothelial cells (HUVECs) by ectopic expression of the human telomerase catalytic enzyme (hTERT) and simian virus 40 large T (SV40 LT) ...Objective: To establish normally conditionally-immortalized human umbilical vein endothelial cells (HUVECs) by ectopic expression of the human telomerase catalytic enzyme (hTERT) and simian virus 40 large T (SV40 LT) antigen. Methods:Primary HUVECs were transfected with recombinant retrovirus containing hTERT or SV40 LT respectively. Subsequently drug resistant cell clones were screened and expanded for further studies. Endothelial cell biomarkers were confirmed by examination.Results: The morphological phenotype of the transfected cells was similar to the non-transfected cells. Von Willebrand factor,hTERT and SV40 LT could be detected in transfected HUVECs. Moreover, higher telomerase activity in transfected cells was maintained for over 50 population doublings compared with only low level of endogenous telomerase transiently at early population doublings in primary HUVECs. When exposed to TNF-α (tumor necrosis factor-α), the expression of E-selectin in transfected cells was significantly up-regulated, but no alteration of endothelial lipase was found. Conclusion: Ectopic coexpression of hTERT and SV40 LT can effectively immortalize HUVECs without tumorigenicity in vitro. Immortalized HUVECs may be an ideal target of further molecular function studies.展开更多
AIM: To develop a hepatocyte cell line, we immortalized primary porcine hepatocytes with a retroviral vector SSR#69 containing the Simian Virus 40 T antigen (SV40T ag). METHODS: We first established a method of porcin...AIM: To develop a hepatocyte cell line, we immortalized primary porcine hepatocytes with a retroviral vector SSR#69 containing the Simian Virus 40 T antigen (SV40T ag). METHODS: We first established a method of porcine hepatocyte isolation with a modified four-step retrograde perfusion technique. Then the porcine hepatocytes were immortalized with retroviral vector SSR#69 expressing SV40T and hygromycin-resistance genes flanked by paired loxP recombination targets. SV40T cDNA in the expanded cells was subsequently excised by Cre/LoxP site-specific recombination. RESULTS: The resultant hepatocytes with high viability (97%) were successfully immortalized with retroviral vector SSR#69. One of the immortalized clones showed the typical morphological appearance, TJPH-1, and was selected by clone rings and expanded in culture. After excision of the SV40T gene with Cre-recombinase, cells stopped growing. The population of reverted cells exhibited the characteristics of differentiated hepatocytes. CONCLUSION: In conclusion, we herein describe a modified method of hepatocyte isolation and subsequently established a porcine hepatocyte cell line mediated by retroviral transfer and site-specific recombination.展开更多
AIM: To investigate into the potential involvement of pyrin containing 3 gene(NLRP3), a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of...AIM: To investigate into the potential involvement of pyrin containing 3 gene(NLRP3), a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of corneas against viruses.METHODS: The herpes viral keratitis model was utilized in BALB/c mice with inoculation of herpes simplex virus-1(HSV-1). Corneal tissues removed during therapy of patients with viral keratitis as well as a Simian vacuolating virus 40(SV40)-immortalized human corneal epithelial cell line were also examined.Immunohistochemistry was used to detect NLRP3 in these subjects, focusing on their distribution in tissue or cells. Western blot was used to measure the level of NLRP3 and another two related molecules in NLPR3 inflammasome, namely caspase-1 and IL-1β.RESULTS: The NLRP3 activation induced by HSV-1infection in corneas was accompanied with redistribution of NLRP3 from the cytoplasm to the nucleus in both murine and human corneal epithelial cells. Furthermore,in the SV40-immortalized human corneal epithelial cells,NLRP3 was exclusively located in the nucleus, and treatment of the cells with high concentration of extracellular potassium(known as an inhibitor of NLRP3activation) effectively drove NLRP3 back to the cytoplasm as reflected by both immunohistochemistry and Western blot.· CONCLUSION: It is proposed that herpes virus infection activates and causes redistribution of NLRP3 to nuclei. Whether this NLRP3 translocation occurs with other viral infections and in other cell types merit further study.展开更多
Immortalized human precartilaginous stem cells (1PSCs) were established to provide stable cell resource for the study of the molecular mechanism of gene targeting on the differentiation of PSCs. Plasmid pCMVSV40T/PU...Immortalized human precartilaginous stem cells (1PSCs) were established to provide stable cell resource for the study of the molecular mechanism of gene targeting on the differentiation of PSCs. Plasmid pCMVSV40T/PUR containing simian virus 40 large T antigen gene (SV40Tag) was transfected into human PSCs by using lipofectin transfection. Colonies were isolated by puromycin selection and expanded by multiple passages. Immunohistochemistry, RT-PCR and Southem blotting were used to identify the transfected cells and to detect the expression and integration of SV40Tag in expanded cell lines. The positive colonies were isolated and subcultured, designated immortalized precartilaginous stem cells (IPSCs), which were confirmed as fibroblast growth factor receptor-3 (FGFR-3) positive cells by immunohistochemistry and RT-PCR. SV40Tag cDNA was found in cultured IPSCs of passage 8 by Southern blotting, and the expressions of SV40Tag mRNA and protein were confirmed by RT-PCR. These findings suggested that IPSCs strain with SV40Tag was constructed successfully.展开更多
AIM:To establish and characterize a spontaneously immortalized human dermal microvascular endothelial cell line,iHDME1.METHODS:We developed a spontaneous immortalization method.This approach is based on the applicatio...AIM:To establish and characterize a spontaneously immortalized human dermal microvascular endothelial cell line,iHDME1.METHODS:We developed a spontaneous immortalization method.This approach is based on the application of optimized culture media and culture conditions without addition of any exogenous oncogenes or carcinogens.Using this approach,we have successfully established a microvascular endothelial cell line,iHDME1,from primary human dermal microvascular endothelial cells.iHDME1 cells have been maintained in culture dishes for more than 50 passages over a period of 6 mo.Using a GFP expressing retrovirus,we generated a GFP-stable cell line(iHDME1-GFP).RESULTS:iHDME1 retain endothelial morphology and uniformly express endothelial markers such as VEGF receptor 2 and VE-cadherin but not α-smooth muscle actin(α-SM-actin) and cytokeratin 18,markers for smooth muscle cells and epithelial cells respectively.These cells retain endothelial properties,migrate in response to VEGF stimulation and form 3-D vascular structures in Matrigel,similar to the parental cells.There is no signif icant difference in cell cycle prof ile between the parental cells and iHDME1 cells.Further analysis indicates enhanced stemness in iHDME1 cells compared to parental cells.iHDME1 cells display elevated expression of CD133 and hTERT.CONCLUSION:iHDME1 cells will be a valuable source for studying angiogenesis.展开更多
Objective To present an experimental method that allows isolation of greater epithelial ridge (GER) and lesser epithelial ridge(LER) cells from postnatal rat cochleae using a combinatorial approach of enzymatic digest...Objective To present an experimental method that allows isolation of greater epithelial ridge (GER) and lesser epithelial ridge(LER) cells from postnatal rat cochleae using a combinatorial approach of enzymatic digestion and mechanical separation and to investigate a retrovirus-mediated gene transfer technique for its possible utility in immortalization of the GER and LER cell lines, in an effort to establish an in vitro model system of hair cell differentiation. Methods GER and LER cells were dissected from postnatal rat cochleae and immortalized by transferring the SV40 large T antigen using a retrovirus. The established cell lines were confirmed through mor-phology observation, immunnocytochemical staining and RT-PCR analysis. The Hath1 gene was transferred into the cell lines using adenovirus-mediated techniques to explore their potential to differentiate into hair cells. Results The established cell lines were stably maintained for more than 20 passages and displayed many features similar to primary GER and LER cells. They grew in patches and assumed a polygonal morphology. Immunostaining showed labeling by SV40 large T antigen and Islet1(a specific marker for GER and LER). All passages of the cell lines expressed SV40 large T antigen on RT-PCR analysis. The cells also showed the capability to differentiate into hair cell-like cells when forced to express Hath1. Conclusion Retrovirus-mediated gene transfer can be used in establishing immortalized progenitor hair cell lines in newborn rat, which may provide an invaluable system for studying hair cell differentiation and regeneration for new treatment of sensory hearing loss caused by hair cell loss.展开更多
Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infr...Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration,which is necessary for the cells homing to the site of injury.In this in vitro study,we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries.We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2.As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects.Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers,with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group.Interestingly,green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation,while near-infrared photobiomodulation notably increased the expression of neuronal markers.Through biochemical analysis and enzyme-linked immunosorbent assays,we observed marked improvements in viability,proliferation,membrane permeability,and mitochondrial membrane potential,as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor.Overall,our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells,offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries.展开更多
Alzheimer's disease(AD)is characterized by complex etiology,long-lasting pathogenesis,and celltype-specific alterations.Currently,there is no cure for AD,emphasizing the urgent need for a comprehensive understandi...Alzheimer's disease(AD)is characterized by complex etiology,long-lasting pathogenesis,and celltype-specific alterations.Currently,there is no cure for AD,emphasizing the urgent need for a comprehensive understanding of cell-specific pathology.Astrocytes,principal homeostatic cells of the central nervous system,are key players in the pathogenesis of neurodegenerative diseases,including AD.Cellular models greatly facilitate the investigation of cell-specific pathological alterations and the dissection of molecular mechanisms and pathways.Tumor-derived and immortalized astrocytic cell lines,alongside the emerging technology of adult induced pluripotent stem cells,are widely used to study cellular dysfunction in AD.Surprisingly,no stable cell lines were available from genetic mouse AD models.Recently,we established immortalized hippocampal astroglial cell lines from amyloid-βprecursor protein/presenilin-1/Tau triple-transgenic(3xTg)-AD mice(denominated as wild type(WT)-and 3Tg-iAstro cells)using retrovirus-mediated transduction of simian virus 40 large T-antigen and propagation without clonal selection,thereby maintaining natural heterogeneity of primary cultures.Several groups have successfully used 3Tg-iAstro cells for single-cell and omics approaches to study astrocytic AD-related alterations of calcium signaling,mitochondrial dysfunctions,disproteostasis,altered homeostatic and signaling support to neurons,and blood-brain barrier models.Here we provide a comparative overview of the most used models to study astrocytes in vitro,such as primary culture,tumor-derived cell lines,immortalized astroglial cell lines,and induced pluripotent stem cell-derived astrocytes.We conclude that immortalized WT-and 3Tg-iAstro cells provide a noncompetitive but complementary,low-cost,easy-to-handle,and versatile cellular model for dissection of astrocyte-specific AD-related alterations and preclinical drug discovery.展开更多
The majestic Taibai Mountain boasts nature’s magic and wisdom, and has been known as the“Immortal Mountain”since ancient times.THE Taibai Mountain in Baoji,Shaanxi Province, is a range of major mountain peaks in th...The majestic Taibai Mountain boasts nature’s magic and wisdom, and has been known as the“Immortal Mountain”since ancient times.THE Taibai Mountain in Baoji,Shaanxi Province, is a range of major mountain peaks in the famous Qinling Mountains in China, having the highest peak east of the QinghaiTibet Plateau. Rising from the plains.展开更多
Telomerase has fundamental roles in bypassing cellular aging and in cancer progression by maintaining telomere homeostasis and integrity. However, recent studies have led some investigators to suggest novel biochemica...Telomerase has fundamental roles in bypassing cellular aging and in cancer progression by maintaining telomere homeostasis and integrity. However, recent studies have led some investigators to suggest novel biochemical properties of telomerase in several essential cell signaling pathways without apparent involvement of its well established function in telomere maintenance. These observations may further enhance our understanding of the molecular actions of telomerase in aging and cancer. This review will provide an update on the extracurricular activities of telomerase in apoptosis, DNA repair, stern cell function, and in the regulation of gene expression.展开更多
BACKGROUND: Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as ...BACKGROUND: Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES: A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the Key words such as liver failure bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS: Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines the incorporation of BAL with GS-HepG2 cells or alginate encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS: Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functionalhepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.展开更多
Background:Spermatogonial stem cells(SSCs)are capable of both self-renewal and differentiation to mature functional spermatozoa,being the only adult stem cells in the males that can transmit genetic information to the...Background:Spermatogonial stem cells(SSCs)are capable of both self-renewal and differentiation to mature functional spermatozoa,being the only adult stem cells in the males that can transmit genetic information to the next generation.Porcine SSCs hold great value in transgenic pig production and in establishment of porcine models for regenerative medicine.However,studies and applications of porcine SSCs have been greatly hampered by the low number of SSCs in the testis as well as the lack of an ideal stable long-term culture system to propagate porcine SSCs perpetually.Results:In the present study,by lentiviral transduction of plasmids expressing the simian virus 40(SV40)large T antigen into porcine primary SSCs,we developed two immortalized cell lines with porcine SSC attributes.The established cell lines,with the expression of porcine SSC and germ cell markers UCHL1,PLZF,THY1,VASA and DAZL,could respond to retinoic acid(RA),and could colonize the recipient mouse testis without tumor formation after transplantation.The cell lines displayed infinite proliferation potential,and have now been cultured for more than 7 months and passaged for over 35 times without morphological abnormalities.Conclusions:We have for the first time established porcine SSC lines that could provide abundant cell sources for mechanistic studies on porcine SSC self-renewal and differentiation,thereby facilitating development of an optimal long-term culture system for porcine primary SSCs and their application to animal husbandry and medicine.展开更多
Male germline stem cells (mGSCs) are unique adult germ cells with self-renewal potential and spermatogenesis function in the testis. However, further studies are needed to establish a long-term cultural system of mG...Male germline stem cells (mGSCs) are unique adult germ cells with self-renewal potential and spermatogenesis function in the testis. However, further studies are needed to establish a long-term cultural system of mGSCs in vitro, especially for large animals such as bovine mGSCs. In this study, we first established a stable immortalized bovine male germline stem cell line by transducing Simian virus 40 (SV40) large T antigen. The proliferation of these cells was improved significantly. These cells could express spermatogonial stem cell (SSC)-specific markers, such as PLZF, PGP9.5, VASA, LIN28A, and CD49F, both in the mRNA and protein levels. Additionally, these cells could be differentiated into three germ layer cells to enter meiosis, form colonies, and proliferate in the seminiferous tubules of busulfan-induced infertile mice. The immortalized bovine mGSCs maintain the criteria of mGSCs.展开更多
Vectors of pcDNA3.1-hTERT and pcDNA 3. 1-SV40 T were established. After linearization, they were cotransfected to mammary epithelial cells of Holstein cow, in order to research on the role of hTERT and SV40 T in immor...Vectors of pcDNA3.1-hTERT and pcDNA 3. 1-SV40 T were established. After linearization, they were cotransfected to mammary epithelial cells of Holstein cow, in order to research on the role of hTERT and SV40 T in immortalized mammary epithelial cells in vitro. Both PT-PCR and immunohistochemical as- says of cells were carried out. Results showed that the expression of hTERT and SV40 T could effectively prolong the culture time in vitro of mammary epithelial cells, and enhance the cell passage number. The obtained cell line could be expressed normally, indicating that the in vitro cultured mammary epithelial cells expressing both hTERT and SV40 T could effectively prolong cell llfe without affecting the characteristics of mammary cells.展开更多
Through analyzing the relationship between immortal cultures and tourist activities, the authors proposed that birth of immortal thought was closely related to early tourist activities. The core idea of immortal cultu...Through analyzing the relationship between immortal cultures and tourist activities, the authors proposed that birth of immortal thought was closely related to early tourist activities. The core idea of immortal cultures was in conformity with modern leisure cultures. Tourist resources in Ancient Xianshi Township were re-explored, and application of immortal cultures in tourism development of the town was studied. The authors proposed that both "immortal" and "salt" should be valued in the tourism development of ancient Xianshi Township, interaction and integration of immortal stories, immortal traces and scenic areas should be stressed in the application of immortal cultures, so as to incorporate "immortal bath" and modern salt bath, and to combine creation of fairyland with modern sightseeing and leisure agriculture.展开更多
Cilia depend on their highly differentiated structure, a 9 + 2 arrangement, to remove particles from the lung and to transport reproductive cells. Immortalized cells could potentially be of great use in cilia researc...Cilia depend on their highly differentiated structure, a 9 + 2 arrangement, to remove particles from the lung and to transport reproductive cells. Immortalized cells could potentially be of great use in cilia research. Immortalization of cells with cilia structure containing the 9 + 2 arrangement might be able to generate cell lines with such cilia structure. How- ever, whether immortalized cells can retain such a highly differentiated structure remains unclear. Here we demonstrate that (1) using Ela gene transfection, tracheal cells are immortalized; (2) interestingly, in a gel culture the immortalized cells form spherical aggregations within which a lumen is developed; and (3) surprisingly, inside the aggregation, cilia containing a 9 + 2 arrangement grow from the cell's apical pole and protrude into the lumen. These results may influence future research in many areas such as understanding the mechanisms of cilia differentiation, cilia generation in other existing cell lines, cilia disorders, generation of other highly differentiated structures besides cilia using the gel culture, immortalization of other ciliated cells with the Ela gene, development of cilia motile function, and establishment of a research model to provide uniform ciliated cells.展开更多
文摘Nasopharyngeal carcinoma (NPC) is a common cancer in Southern China and Southeast Asia. The disease is a poorly differentiated carcinoma without effective cure, and the mechanism underlying its development remains largely unknown. Of several factors identified in NPC aetiology in recent years, Epstein-Barr virus (EBV) infection has emerged to be most important. In almost all NPC cells, EBV uses several intracellular mechanisms to cause oncogenic evolution of the infected cells. One such mechanism by which EBV infection induces cellular immortalization is believed to be through the activation of telomerase, an enzyme that is normally repressed but becomes activated during cancer development. Studies show that greater than 85% of primary NPC display high telomerase activity by mechanisms involving EBV infection, consistent with the notion that EBV is commonly involved in inducing cell immortalization. More recently, different EBV proteins have been shown to activate or inhibit the human telomerase reverse transcriptase gene, by modulating intracellular signalling pathways. These findings suggest a new model with a number of challenges towards our understanding, molecular targeting and therapeutic intervention in NPC.
基金Supported by Major Scientific and Technological Project of Shandong Province,No.201221019Cisco Clinical Oncology Research Fund and Bayer Schering Cancer Research Fund,No.Y-B2012-011
文摘AIM: To establish a method for the reversible immortalization of human hepatocytes, which may offer a good and safe source of hepatocytes for practical applications.
基金Project (No. 021110240) supported by grants from the Foundation of the Department of Science and Technology of Zhejiang Province,China
文摘Objective: To establish normally conditionally-immortalized human umbilical vein endothelial cells (HUVECs) by ectopic expression of the human telomerase catalytic enzyme (hTERT) and simian virus 40 large T (SV40 LT) antigen. Methods:Primary HUVECs were transfected with recombinant retrovirus containing hTERT or SV40 LT respectively. Subsequently drug resistant cell clones were screened and expanded for further studies. Endothelial cell biomarkers were confirmed by examination.Results: The morphological phenotype of the transfected cells was similar to the non-transfected cells. Von Willebrand factor,hTERT and SV40 LT could be detected in transfected HUVECs. Moreover, higher telomerase activity in transfected cells was maintained for over 50 population doublings compared with only low level of endogenous telomerase transiently at early population doublings in primary HUVECs. When exposed to TNF-α (tumor necrosis factor-α), the expression of E-selectin in transfected cells was significantly up-regulated, but no alteration of endothelial lipase was found. Conclusion: Ectopic coexpression of hTERT and SV40 LT can effectively immortalize HUVECs without tumorigenicity in vitro. Immortalized HUVECs may be an ideal target of further molecular function studies.
基金Supported by The Major Scientific and Technological Project of Hubei Province, No. 2007ABD005
文摘AIM: To develop a hepatocyte cell line, we immortalized primary porcine hepatocytes with a retroviral vector SSR#69 containing the Simian Virus 40 T antigen (SV40T ag). METHODS: We first established a method of porcine hepatocyte isolation with a modified four-step retrograde perfusion technique. Then the porcine hepatocytes were immortalized with retroviral vector SSR#69 expressing SV40T and hygromycin-resistance genes flanked by paired loxP recombination targets. SV40T cDNA in the expanded cells was subsequently excised by Cre/LoxP site-specific recombination. RESULTS: The resultant hepatocytes with high viability (97%) were successfully immortalized with retroviral vector SSR#69. One of the immortalized clones showed the typical morphological appearance, TJPH-1, and was selected by clone rings and expanded in culture. After excision of the SV40T gene with Cre-recombinase, cells stopped growing. The population of reverted cells exhibited the characteristics of differentiated hepatocytes. CONCLUSION: In conclusion, we herein describe a modified method of hepatocyte isolation and subsequently established a porcine hepatocyte cell line mediated by retroviral transfer and site-specific recombination.
基金Supported by National Natural Science Foundation of China(No.81273212,81100651)Project of Science and Technology of Shandong Province(No.2014GSF118044)
文摘AIM: To investigate into the potential involvement of pyrin containing 3 gene(NLRP3), a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of corneas against viruses.METHODS: The herpes viral keratitis model was utilized in BALB/c mice with inoculation of herpes simplex virus-1(HSV-1). Corneal tissues removed during therapy of patients with viral keratitis as well as a Simian vacuolating virus 40(SV40)-immortalized human corneal epithelial cell line were also examined.Immunohistochemistry was used to detect NLRP3 in these subjects, focusing on their distribution in tissue or cells. Western blot was used to measure the level of NLRP3 and another two related molecules in NLPR3 inflammasome, namely caspase-1 and IL-1β.RESULTS: The NLRP3 activation induced by HSV-1infection in corneas was accompanied with redistribution of NLRP3 from the cytoplasm to the nucleus in both murine and human corneal epithelial cells. Furthermore,in the SV40-immortalized human corneal epithelial cells,NLRP3 was exclusively located in the nucleus, and treatment of the cells with high concentration of extracellular potassium(known as an inhibitor of NLRP3activation) effectively drove NLRP3 back to the cytoplasm as reflected by both immunohistochemistry and Western blot.· CONCLUSION: It is proposed that herpes virus infection activates and causes redistribution of NLRP3 to nuclei. Whether this NLRP3 translocation occurs with other viral infections and in other cell types merit further study.
基金supported by a grant from the National Natural Science Foundation of China (No.30650007)
文摘Immortalized human precartilaginous stem cells (1PSCs) were established to provide stable cell resource for the study of the molecular mechanism of gene targeting on the differentiation of PSCs. Plasmid pCMVSV40T/PUR containing simian virus 40 large T antigen gene (SV40Tag) was transfected into human PSCs by using lipofectin transfection. Colonies were isolated by puromycin selection and expanded by multiple passages. Immunohistochemistry, RT-PCR and Southem blotting were used to identify the transfected cells and to detect the expression and integration of SV40Tag in expanded cell lines. The positive colonies were isolated and subcultured, designated immortalized precartilaginous stem cells (IPSCs), which were confirmed as fibroblast growth factor receptor-3 (FGFR-3) positive cells by immunohistochemistry and RT-PCR. SV40Tag cDNA was found in cultured IPSCs of passage 8 by Southern blotting, and the expressions of SV40Tag mRNA and protein were confirmed by RT-PCR. These findings suggested that IPSCs strain with SV40Tag was constructed successfully.
基金Supported by (in part) Grants from NIH (CA108856, NS45888 and AR053718) to LinPC and training grants from NIH to DeBusk L (T32CA009592)
文摘AIM:To establish and characterize a spontaneously immortalized human dermal microvascular endothelial cell line,iHDME1.METHODS:We developed a spontaneous immortalization method.This approach is based on the application of optimized culture media and culture conditions without addition of any exogenous oncogenes or carcinogens.Using this approach,we have successfully established a microvascular endothelial cell line,iHDME1,from primary human dermal microvascular endothelial cells.iHDME1 cells have been maintained in culture dishes for more than 50 passages over a period of 6 mo.Using a GFP expressing retrovirus,we generated a GFP-stable cell line(iHDME1-GFP).RESULTS:iHDME1 retain endothelial morphology and uniformly express endothelial markers such as VEGF receptor 2 and VE-cadherin but not α-smooth muscle actin(α-SM-actin) and cytokeratin 18,markers for smooth muscle cells and epithelial cells respectively.These cells retain endothelial properties,migrate in response to VEGF stimulation and form 3-D vascular structures in Matrigel,similar to the parental cells.There is no signif icant difference in cell cycle prof ile between the parental cells and iHDME1 cells.Further analysis indicates enhanced stemness in iHDME1 cells compared to parental cells.iHDME1 cells display elevated expression of CD133 and hTERT.CONCLUSION:iHDME1 cells will be a valuable source for studying angiogenesis.
文摘Objective To present an experimental method that allows isolation of greater epithelial ridge (GER) and lesser epithelial ridge(LER) cells from postnatal rat cochleae using a combinatorial approach of enzymatic digestion and mechanical separation and to investigate a retrovirus-mediated gene transfer technique for its possible utility in immortalization of the GER and LER cell lines, in an effort to establish an in vitro model system of hair cell differentiation. Methods GER and LER cells were dissected from postnatal rat cochleae and immortalized by transferring the SV40 large T antigen using a retrovirus. The established cell lines were confirmed through mor-phology observation, immunnocytochemical staining and RT-PCR analysis. The Hath1 gene was transferred into the cell lines using adenovirus-mediated techniques to explore their potential to differentiate into hair cells. Results The established cell lines were stably maintained for more than 20 passages and displayed many features similar to primary GER and LER cells. They grew in patches and assumed a polygonal morphology. Immunostaining showed labeling by SV40 large T antigen and Islet1(a specific marker for GER and LER). All passages of the cell lines expressed SV40 large T antigen on RT-PCR analysis. The cells also showed the capability to differentiate into hair cell-like cells when forced to express Hath1. Conclusion Retrovirus-mediated gene transfer can be used in establishing immortalized progenitor hair cell lines in newborn rat, which may provide an invaluable system for studying hair cell differentiation and regeneration for new treatment of sensory hearing loss caused by hair cell loss.
基金supported by the National Research Foundation(NRF)S&F-Scarce Skills Postdoctoral Fellowship,No.120752(to AC)the Global Excellence and Stature,Fourth Industrial Revolution(GES 4.0)Postgraduate Scholarship(to MJR)the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa(SARChI/NRF-DST),No.146290(to DDS and HA).
文摘Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration,which is necessary for the cells homing to the site of injury.In this in vitro study,we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries.We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2.As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects.Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers,with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group.Interestingly,green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation,while near-infrared photobiomodulation notably increased the expression of neuronal markers.Through biochemical analysis and enzyme-linked immunosorbent assays,we observed marked improvements in viability,proliferation,membrane permeability,and mitochondrial membrane potential,as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor.Overall,our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells,offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries.
基金supported by fellowship to a grant from CRT Foundation,No.1393-2017(to LT)grants from the Fondazione Cariplo,Nos.2013-0795(to AAG),2014-1094(to DL)grants from The Universitàdel Piemonte Orientale,Nos.FAR-2016(to DL),FAR-2019(to DL)。
文摘Alzheimer's disease(AD)is characterized by complex etiology,long-lasting pathogenesis,and celltype-specific alterations.Currently,there is no cure for AD,emphasizing the urgent need for a comprehensive understanding of cell-specific pathology.Astrocytes,principal homeostatic cells of the central nervous system,are key players in the pathogenesis of neurodegenerative diseases,including AD.Cellular models greatly facilitate the investigation of cell-specific pathological alterations and the dissection of molecular mechanisms and pathways.Tumor-derived and immortalized astrocytic cell lines,alongside the emerging technology of adult induced pluripotent stem cells,are widely used to study cellular dysfunction in AD.Surprisingly,no stable cell lines were available from genetic mouse AD models.Recently,we established immortalized hippocampal astroglial cell lines from amyloid-βprecursor protein/presenilin-1/Tau triple-transgenic(3xTg)-AD mice(denominated as wild type(WT)-and 3Tg-iAstro cells)using retrovirus-mediated transduction of simian virus 40 large T-antigen and propagation without clonal selection,thereby maintaining natural heterogeneity of primary cultures.Several groups have successfully used 3Tg-iAstro cells for single-cell and omics approaches to study astrocytic AD-related alterations of calcium signaling,mitochondrial dysfunctions,disproteostasis,altered homeostatic and signaling support to neurons,and blood-brain barrier models.Here we provide a comparative overview of the most used models to study astrocytes in vitro,such as primary culture,tumor-derived cell lines,immortalized astroglial cell lines,and induced pluripotent stem cell-derived astrocytes.We conclude that immortalized WT-and 3Tg-iAstro cells provide a noncompetitive but complementary,low-cost,easy-to-handle,and versatile cellular model for dissection of astrocyte-specific AD-related alterations and preclinical drug discovery.
文摘The majestic Taibai Mountain boasts nature’s magic and wisdom, and has been known as the“Immortal Mountain”since ancient times.THE Taibai Mountain in Baoji,Shaanxi Province, is a range of major mountain peaks in the famous Qinling Mountains in China, having the highest peak east of the QinghaiTibet Plateau. Rising from the plains.
基金Acknowledgments Research in author's lab was supported in part by a grant from the National Natural Science Foundation of China (No. 30671065), the Research Fund for the Doctoral Program of High Education (No. 20060027008), and the National Important Basic Research Project (No. 2007CB507402) to Yusheng Cong. Support from NASA grants NNJ06HD92G and NNJ05HD36G (JWS) is acknowledged.
文摘Telomerase has fundamental roles in bypassing cellular aging and in cancer progression by maintaining telomere homeostasis and integrity. However, recent studies have led some investigators to suggest novel biochemical properties of telomerase in several essential cell signaling pathways without apparent involvement of its well established function in telomere maintenance. These observations may further enhance our understanding of the molecular actions of telomerase in aging and cancer. This review will provide an update on the extracurricular activities of telomerase in apoptosis, DNA repair, stern cell function, and in the regulation of gene expression.
基金supported by grants from the Chinese High-Tech Research & Development (863) Program (2011AA020104)Science Fund for Creative Research Groups of the National Natural Science Foundation of China (81121002)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Technology Group Project for Infectious Disease Control of Zhejiang Province (2009R50041)
文摘BACKGROUND: Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES: A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the Key words such as liver failure bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS: Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines the incorporation of BAL with GS-HepG2 cells or alginate encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS: Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functionalhepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31572401,31772605)to W.Z.the Open Fund of Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province(Grant No.SNDK-KF-201804)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20180204)and a startup fund from Northwest A&F University(Grant No.2452018037)to Y.Z.
文摘Background:Spermatogonial stem cells(SSCs)are capable of both self-renewal and differentiation to mature functional spermatozoa,being the only adult stem cells in the males that can transmit genetic information to the next generation.Porcine SSCs hold great value in transgenic pig production and in establishment of porcine models for regenerative medicine.However,studies and applications of porcine SSCs have been greatly hampered by the low number of SSCs in the testis as well as the lack of an ideal stable long-term culture system to propagate porcine SSCs perpetually.Results:In the present study,by lentiviral transduction of plasmids expressing the simian virus 40(SV40)large T antigen into porcine primary SSCs,we developed two immortalized cell lines with porcine SSC attributes.The established cell lines,with the expression of porcine SSC and germ cell markers UCHL1,PLZF,THY1,VASA and DAZL,could respond to retinoic acid(RA),and could colonize the recipient mouse testis without tumor formation after transplantation.The cell lines displayed infinite proliferation potential,and have now been cultured for more than 7 months and passaged for over 35 times without morphological abnormalities.Conclusions:We have for the first time established porcine SSC lines that could provide abundant cell sources for mechanistic studies on porcine SSC self-renewal and differentiation,thereby facilitating development of an optimal long-term culture system for porcine primary SSCs and their application to animal husbandry and medicine.
基金supported by the National Major Project for Production of Transgenic Breeding of China(2014ZX08007002)the National Basic Research Program of China(2016YFA0100203)the Program of National Natural Science Foundation of China(31572399,31272518)
文摘Male germline stem cells (mGSCs) are unique adult germ cells with self-renewal potential and spermatogenesis function in the testis. However, further studies are needed to establish a long-term cultural system of mGSCs in vitro, especially for large animals such as bovine mGSCs. In this study, we first established a stable immortalized bovine male germline stem cell line by transducing Simian virus 40 (SV40) large T antigen. The proliferation of these cells was improved significantly. These cells could express spermatogonial stem cell (SSC)-specific markers, such as PLZF, PGP9.5, VASA, LIN28A, and CD49F, both in the mRNA and protein levels. Additionally, these cells could be differentiated into three germ layer cells to enter meiosis, form colonies, and proliferate in the seminiferous tubules of busulfan-induced infertile mice. The immortalized bovine mGSCs maintain the criteria of mGSCs.
基金Supported by the Overseas Distinguished Experts Fund for Taishan Scholarthe Special Project for National Cow Industry Technology System Construction+3 种基金the Major Projects for National Transgene(2009ZX08007-006B,2011ZX08007-002,2011ZX08008-004)the Natural Science Foundation of Shandong Province(ZR2010CM012)the Innovation Projects for Jinan Universities and Institutes(201004027,201202059,201102034)the Youth Natural Science Foundation of Shandong Province(ZR2010ZR029)
文摘Vectors of pcDNA3.1-hTERT and pcDNA 3. 1-SV40 T were established. After linearization, they were cotransfected to mammary epithelial cells of Holstein cow, in order to research on the role of hTERT and SV40 T in immortalized mammary epithelial cells in vitro. Both PT-PCR and immunohistochemical as- says of cells were carried out. Results showed that the expression of hTERT and SV40 T could effectively prolong the culture time in vitro of mammary epithelial cells, and enhance the cell passage number. The obtained cell line could be expressed normally, indicating that the in vitro cultured mammary epithelial cells expressing both hTERT and SV40 T could effectively prolong cell llfe without affecting the characteristics of mammary cells.
文摘Through analyzing the relationship between immortal cultures and tourist activities, the authors proposed that birth of immortal thought was closely related to early tourist activities. The core idea of immortal cultures was in conformity with modern leisure cultures. Tourist resources in Ancient Xianshi Township were re-explored, and application of immortal cultures in tourism development of the town was studied. The authors proposed that both "immortal" and "salt" should be valued in the tourism development of ancient Xianshi Township, interaction and integration of immortal stories, immortal traces and scenic areas should be stressed in the application of immortal cultures, so as to incorporate "immortal bath" and modern salt bath, and to combine creation of fairyland with modern sightseeing and leisure agriculture.
文摘Cilia depend on their highly differentiated structure, a 9 + 2 arrangement, to remove particles from the lung and to transport reproductive cells. Immortalized cells could potentially be of great use in cilia research. Immortalization of cells with cilia structure containing the 9 + 2 arrangement might be able to generate cell lines with such cilia structure. How- ever, whether immortalized cells can retain such a highly differentiated structure remains unclear. Here we demonstrate that (1) using Ela gene transfection, tracheal cells are immortalized; (2) interestingly, in a gel culture the immortalized cells form spherical aggregations within which a lumen is developed; and (3) surprisingly, inside the aggregation, cilia containing a 9 + 2 arrangement grow from the cell's apical pole and protrude into the lumen. These results may influence future research in many areas such as understanding the mechanisms of cilia differentiation, cilia generation in other existing cell lines, cilia disorders, generation of other highly differentiated structures besides cilia using the gel culture, immortalization of other ciliated cells with the Ela gene, development of cilia motile function, and establishment of a research model to provide uniform ciliated cells.