The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation...The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation functions, structure parameters, and training functions. Bayesian optimization was used to determine the optimal hyper-parameters of the deep neural network. The model with the best performance was applied to investigate the importance of process parameter variables on the impact energy of low carbon steel. The results show that the deep neural network obtains better prediction results than those of a shallow neural network because of the multiple hidden layers improving the learning ability of the model. Among the models, the Bayesian optimization deep neural network achieves the highest correlation coefficient of 0.9536, the lowest mean absolute relative error of 0.0843, and the lowest root mean square error of 17.34 J for predicting the impact energy of low carbon steel. Among the variables, the main factors affecting the impact energy of low carbon steel with a final thickness of7.5 mm are the thickness of the original slab, the thickness of intermediate slab, and the rough rolling exit temperature from the specific hot rolling production line.展开更多
The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the i...The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the impact energy. The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling. It transforms to shallow-layer fatigue flaking along with serious corrosion-abrasion when the impact energy is increased, and finally changes to bulk flaking of hardened laver caused by deeo work-hardening and heaw corrosion-abrasion.展开更多
To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed u...To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.展开更多
The effect of the distance between the notch tip and the position of the middle phase in the FGSs on the Charpy impact energy is investigated in the present paper. The results show that when the notch apex is close to...The effect of the distance between the notch tip and the position of the middle phase in the FGSs on the Charpy impact energy is investigated in the present paper. The results show that when the notch apex is close to the middle layer, the Charpy impact energy reaches its maximum value. This is due to the increment of the absorbed energy by plastic deformation ahead of the notch tip. On the other hand, when the notch tip is far from the middle layer, the Charpy impact energy strongly decreases. Another fundamental motivation of the present work is that for crack arrester configuration, no accurate mathematical or analytical modelling is available up to now. By considering the relationship between the Charpy impact energy and the plastic volume size, a new theoretical model has been developed to link the Charpy impact energy with the distance from the notch apex to the middle phase. This model is a simplified one and the effect of different shapes of the layers and the effect of microstructureon the mechanical properties and plastic region size will be considered in further investigation. The results of the new developed closed form expression show a sound agreement with some recent experimental results taken from the literature.展开更多
Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mech...Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mechanisms of Charpy impacted specimens were observed as twinning induced plasticity(TWIP) without any transfo rmation induced plasticity(TRIP) in all the steels.At cryogenic temperature,many twins were populated in the Cr-added steels,but,interestingly,fine ε-martensite was found in the OCr steel,satisfying the Shoji-Nishiyama(S-N) orientation relationship,{111}γ//{0002}ε and <101>γ//<1120>ε.Even though the cryogenic-temperature staking fault energies(SFEs) of the three steel were situated in the TWIP regime,the martensitic transformation was induced by Mn-and Cr-segregated bands.In the OCr steel,SFEs of low-(Mn,Cr) bands lay between the TWIP and TRIP regimes which were sensitively affected by a small change of SFE.The dynamic compressive test results well showed the relation between segregation bands and the SFEs.Effects of Cr were known as not only increasing the SFE but also promoting the carbide precipitation.In order to identify the possibility of carbide formation,a precipitation kinetics simulation was conducted,and the predicted fractions of precipitated M23C6 were negligible,0.4-1.1×10-5,even at the low cooling rate of 10℃/s.展开更多
Functionally graded steels were produced via electroslag remelting process using the primary electrodes of plain carbon and austenitic stainless steels. Charpy impact energy of as-prepared specimens was measured in th...Functionally graded steels were produced via electroslag remelting process using the primary electrodes of plain carbon and austenitic stainless steels. Charpy impact energy of as-prepared specimens was measured in the form of crack divider. The obtained results show that the impact energy of the specimens depends on the type and the volume fraction of the present phases. Based on the rule of mixtures, a mathematical model, which correlates the impact energy of functionally graded steels to the impact energy of the individual layers through Vickers microhardness of the layers, was presented. A good compatibility between the experimental results and those obtained from the model was observed.展开更多
The European Structural Integrity Assessment Procedure(SINTAP) was applied to the assessment of welded joints of the API 5L X65 pipeline steel with an assumed embedded flaw and surface flaw at the weld toe. At defau...The European Structural Integrity Assessment Procedure(SINTAP) was applied to the assessment of welded joints of the API 5L X65 pipeline steel with an assumed embedded flaw and surface flaw at the weld toe. At default level( level 0), the assessment point was established by esti- mating fracture toughness value K1c conservatively from Charpy energy test data. At the same time, the analysis level 1 (basic level)was applied based on the fracture toughness CTOD. Then the two assessment levels were compared. The assessment results show that all assessment points are located within the failure lines of analysis levels 0 and 1. So the welded joint of the pipeline is safe. It can be concluded that the assessment based on Charpy absorbed energy is practicable when other fracture toughness data are not available, or cannot be easily obtained. The results are conservative.展开更多
Fused deposition modeling(FDM)-3D printing has been the favored technology to build functional components in various industries.The present study investigates infill percentage and infill pattern effects on the printe...Fused deposition modeling(FDM)-3D printing has been the favored technology to build functional components in various industries.The present study investigates infill percentage and infill pattern effects on the printed parts’impact properties through the 3D printing technique using coconut wood-filled PLA composites.Mathematical models are also proposed in the present study with the aim for future property prediction.According to the ASTM standard,fifteen specimens with different parameter combinations were printed using a low-cost FDM 3D printer to evaluate their impact properties.Statistical analysis was performed using MINITAB to validate the experimental data and model development.The experimental outcomes reveal the honeycomb pattern with 75%infill density achieves the highest energy absorption(0.837 J)and impact energy(5.1894 kJ/m^(2)).The p-value from statistical analysis clearly shows that all the impact properties are less than the alpha value of 0.05,suggesting all the properties are vital to determine the impact properties.The validation process affirms that the generated mathematical model for the energy absorbed and the impact energy is reliable at an acceptable level to predict their respective properties.The errors between the experimental value and the predicted value are 3.98%for the energy absorbed and 4.06%for impact energy.The findings are expected to provide insights on the impact behavior of the coconut wood-filled PLA composites prepared by FDM-3D printing and a mathematical model to predict the impact properties.展开更多
Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types ...Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types of PTFE/Al/TiH_(2) reactive liners with different TiH_(2) content are prepared by the molding and sintering method. The energy release characteristics of PTFE/Al/TiH_(2) reactive jet are tested by the transient explosion energy test, and are characterized from pressure and temperature. The reaction delay time,pressure history, and temperature history of the energy release process are obtained, then the actual value of released energy and reaction efficiency of the reactive jet are calculated. The results show that the peak pressure and temperature of the PTFE/Al/TiH_(2) jet initially increase and then decrease with increasing TiH_(2) content. When the TiH_(2) content is 10%, the actual value of released energy and reaction efficiency increased by 24% and 6.4%, respectively, compared to the PTFE/Al jet. The reaction duration of the reactive material is significantly prolonged as the TiH_(2) content increased from 0% to 30%. Finally,combined with the energy release behaviors of PAT material and the dynamic deformation process of liner, the enhancement mechanism of TiH_(2) on energy release of the reactive jet is expounded.展开更多
The automobile industry has been searching for vehicles that use less energy and emit fewer pollutants, which has resulted in a high demand for fuel-efficient vehicles. Because of their higher strength-to-weight ratio...The automobile industry has been searching for vehicles that use less energy and emit fewer pollutants, which has resulted in a high demand for fuel-efficient vehicles. Because of their higher strength-to-weight ratio compared to traditional steel, using fiber-reinforcement composite materials in automobile bodies has emerged as the most effective strategy for improving fuel efficiency while maintaining safety standards. This research paper examined the utilization of fiber-reinforced composite materials in car bodies to meet the increasing consumer demand for fuel-efficient and eco-friendly vehicles. It particularly focused on a carbon-aramid fiber-reinforced composite impact beam for passenger car side door impact protection. Despite the encouraging prospects of the carbon-aramid fiber-reinforced beam, the research uncovered substantial defects in the fabrication process, resulting in diminished load-bearing capacity and energy absorption. As a result, the beam was un-successful in three-point bending tests. This was accomplished by using an I cross-section design with varying thickness because of the higher area moment of inertia. Vacuum-assisted resin transfer molding (VARTM) manufacturing process was used and the finished beam underwent to three-point bending tests.展开更多
To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining ...To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.展开更多
The present study investigates the effect of the addition of nanoparticles into epoxy resins as the matrix on the impact absorbed energy of CFRP (carbon fiber reinforced polymer). Impact absorbed energy is one of th...The present study investigates the effect of the addition of nanoparticles into epoxy resins as the matrix on the impact absorbed energy of CFRP (carbon fiber reinforced polymer). Impact absorbed energy is one of the main properties to evaluate the CFRP's performance for transportation and aerospace structures. Two types of nanoparticle, namely nanofibers and nano-silica beads, were added into the epoxy resin to improve the impact absorption capacity of the CFRP. Two modified additives and conventional epoxy resins were quantitatively compared. The impact test results showed that impact absorbed energy for nanofibers was higher than nano-silica beads, and nanofibers as the additive promoted about 11% of impact absorbed energy compared with neat epoxy resin.展开更多
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(...This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.展开更多
Since the terrorist attacks of September 11,the world energy mar-kets have witnessed remarkable changes in Russia’s re-emergenceas a major world energy power and its active development of energydiplomacy.As the signi...Since the terrorist attacks of September 11,the world energy mar-kets have witnessed remarkable changes in Russia’s re-emergenceas a major world energy power and its active development of energydiplomacy.As the signing of agreements at the Russia-America summitand Russia-Europe summit last May as well as at the regular展开更多
Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from f...Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting展开更多
In this work, the damage and penetration behavior of aluminum foam at various types of impact were examined through experiments. The impact energy of a striker was applied on the fixed aluminum foam having a thickness...In this work, the damage and penetration behavior of aluminum foam at various types of impact were examined through experiments. The impact energy of a striker was applied on the fixed aluminum foam having a thickness of 25 mm while increasing its impact by 2 J at each strike from 6 J to 16 J. The results show that the impact energies from 6 J to 12 J could not penetrate aluminum foam. However, the aluminum foam applied with the impact energy of 12 J incurred severe damages on its lower part. Finally, the aluminum foam applied with the impact energy of 14 J was penetrated. The striker having the impact energy of 6 J could penetrate aluminum foam around 10 mm. At this moment, aluminum foam could absorb the impact energy of around 9 J. When the impact energy of 14 J was applied on the aluminum foam, the aluminum foam was penetrated and it absorbed the impact energy of around 17.2 J. It is possible to create the safer structure against impact using the results of this work. The simulation results for the verification of the experimental results imply that the results for all the experiments in this work are reliable. It is possible to predict the structural safety of the aluminum foam for an impact if the impact behavior of aluminum foam performed in this work is utilized.展开更多
Impact property of the sandwich composite with aluminum foam core was investigated by experiment and simulation analysis. Impact energies of 50, 70 and 100 J were applied to the specimens in impact tests. The results ...Impact property of the sandwich composite with aluminum foam core was investigated by experiment and simulation analysis. Impact energies of 50, 70 and 100 J were applied to the specimens in impact tests. The results show that the striker penetrates the upper face sheet, causing the core to be damaged at 50 J test but the lower face sheet remains intact with no damage. At 70 J test, the striker penetrates the upper face sheet and the core,and causes the lower face sheet to be damaged. Finally at 100 J test, the striker penetrates both the upper face sheet and the core, and even the lower face sheet. The experimental and simulation results agree with each other. By the confirmation with the experimental results, all these simulation results can be applied on structure study of real sandwich composite with aluminum foam core effectively.展开更多
The mechanical behavior of TiNi alloy and Cr12MoV alloy under dynamic impact loading was investigated with a self-made impact testing system. The real-time contact force was measured with a piezoelectric force sensor ...The mechanical behavior of TiNi alloy and Cr12MoV alloy under dynamic impact loading was investigated with a self-made impact testing system. The real-time contact force was measured with a piezoelectric force sensor and digital signal processing system during impact. Equations for predicting instantaneous velocity anti displacement were presented. The results showed that the TiNi alloy exhibited a plateau of maximum contact force with increasing impact height. At the plateau stage, TiNi alloy in the parent phase can absorb impact energy and keep the maximum contact force nearly identical due to its pseudoelasticity.展开更多
The mechanical behaviors of Ti-50.7%Ni shape memory alloy under a dynamic impact loading condition were investigated by a home-built impact testing system. Both the contact force and the contact time during the impact...The mechanical behaviors of Ti-50.7%Ni shape memory alloy under a dynamic impact loading condition were investigated by a home-built impact testing system. Both the contact force and the contact time during the impact process were measured with a piezoelectric force sensor and a digital signal processing system in real time. The predicted instantaneous velocity and the displacement formulae are presented. Results show that the maximum contact force increased, while the contact time decreased with the increase of the temperature when the TiNi alloy was in a martensitic state. When the compressive stress during the impact process was higher than the critical stress of the stress-induced martensitic transformation, the TiNi alloy specimen in the parent phase left no permanent deformation but could dissipate the impact energy.展开更多
The impact trend of reck-coal system was studied by the method of accumulating and releasing of deformation energy and interaction of rock-coal system. The system model of roof-coal-floor was established. Based on the...The impact trend of reck-coal system was studied by the method of accumulating and releasing of deformation energy and interaction of rock-coal system. The system model of roof-coal-floor was established. Based on the RFPA software, rock fracture process analysis system, the numerical test of deformation, fracture and energy transmission of nonlinear and nonhomogeneous rock-coal system, and the numerical test and evaluating method of impact trend of reck-coal system were achieved. When the same coal seam was in different roof and floor conditions, the fracture process of reck-coal system can be classified as gradual, sudden and delayed fracture three kinds, and their impact trend can be classified as void, intense and medium correspondingly. The rock-coal system's impact trend is evaluated by the system impact index p and burst expanding forms. The criteria μ are μ〈1.0, 1.0≤μ〈l .5 and μ≥1.5 when the impact trend is void, intense or medium, which are tested and verified by the No.2 and No.4 coal seams in Sun- cun mine.展开更多
基金financially supported by the National Natural Science Foundation of China (No.U1960202)the China Post-doctoral Science Foundation funded Projects (No.2019M651467)the Natural Science Foundation Joint Fund Project of Liaoning Province, China (No.2019-KF-2506)。
文摘The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation functions, structure parameters, and training functions. Bayesian optimization was used to determine the optimal hyper-parameters of the deep neural network. The model with the best performance was applied to investigate the importance of process parameter variables on the impact energy of low carbon steel. The results show that the deep neural network obtains better prediction results than those of a shallow neural network because of the multiple hidden layers improving the learning ability of the model. Among the models, the Bayesian optimization deep neural network achieves the highest correlation coefficient of 0.9536, the lowest mean absolute relative error of 0.0843, and the lowest root mean square error of 17.34 J for predicting the impact energy of low carbon steel. Among the variables, the main factors affecting the impact energy of low carbon steel with a final thickness of7.5 mm are the thickness of the original slab, the thickness of intermediate slab, and the rough rolling exit temperature from the specific hot rolling production line.
基金the Doctoral Authorization Point Foundation of Education Ministry of China(No.20040359004)the Major Project Foundation of Education Office of Anhui Province(No.KJ2007A060)
文摘The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the impact energy. The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling. It transforms to shallow-layer fatigue flaking along with serious corrosion-abrasion when the impact energy is increased, and finally changes to bulk flaking of hardened laver caused by deeo work-hardening and heaw corrosion-abrasion.
基金supported by the Special Foundation for Introducing and Selecting Talent in Hefei University of Technology, China (No. 2004000197)
文摘To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.
文摘The effect of the distance between the notch tip and the position of the middle phase in the FGSs on the Charpy impact energy is investigated in the present paper. The results show that when the notch apex is close to the middle layer, the Charpy impact energy reaches its maximum value. This is due to the increment of the absorbed energy by plastic deformation ahead of the notch tip. On the other hand, when the notch tip is far from the middle layer, the Charpy impact energy strongly decreases. Another fundamental motivation of the present work is that for crack arrester configuration, no accurate mathematical or analytical modelling is available up to now. By considering the relationship between the Charpy impact energy and the plastic volume size, a new theoretical model has been developed to link the Charpy impact energy with the distance from the notch apex to the middle phase. This model is a simplified one and the effect of different shapes of the layers and the effect of microstructureon the mechanical properties and plastic region size will be considered in further investigation. The results of the new developed closed form expression show a sound agreement with some recent experimental results taken from the literature.
基金supported financially by the Korea University Grant for the eighth author, the Ministry of Knowledge Economy (No. 10044574-2013-45)Brain Korea 21 Plus Project for Center for Creative Industrial materialsKorea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (No. P0002020, The Competency Development Program for Industry Specialist)。
文摘Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mechanisms of Charpy impacted specimens were observed as twinning induced plasticity(TWIP) without any transfo rmation induced plasticity(TRIP) in all the steels.At cryogenic temperature,many twins were populated in the Cr-added steels,but,interestingly,fine ε-martensite was found in the OCr steel,satisfying the Shoji-Nishiyama(S-N) orientation relationship,{111}γ//{0002}ε and <101>γ//<1120>ε.Even though the cryogenic-temperature staking fault energies(SFEs) of the three steel were situated in the TWIP regime,the martensitic transformation was induced by Mn-and Cr-segregated bands.In the OCr steel,SFEs of low-(Mn,Cr) bands lay between the TWIP and TRIP regimes which were sensitively affected by a small change of SFE.The dynamic compressive test results well showed the relation between segregation bands and the SFEs.Effects of Cr were known as not only increasing the SFE but also promoting the carbide precipitation.In order to identify the possibility of carbide formation,a precipitation kinetics simulation was conducted,and the predicted fractions of precipitated M23C6 were negligible,0.4-1.1×10-5,even at the low cooling rate of 10℃/s.
文摘Functionally graded steels were produced via electroslag remelting process using the primary electrodes of plain carbon and austenitic stainless steels. Charpy impact energy of as-prepared specimens was measured in the form of crack divider. The obtained results show that the impact energy of the specimens depends on the type and the volume fraction of the present phases. Based on the rule of mixtures, a mathematical model, which correlates the impact energy of functionally graded steels to the impact energy of the individual layers through Vickers microhardness of the layers, was presented. A good compatibility between the experimental results and those obtained from the model was observed.
基金Supported by National Natural Science Foundation of China(No. 50375109)
文摘The European Structural Integrity Assessment Procedure(SINTAP) was applied to the assessment of welded joints of the API 5L X65 pipeline steel with an assumed embedded flaw and surface flaw at the weld toe. At default level( level 0), the assessment point was established by esti- mating fracture toughness value K1c conservatively from Charpy energy test data. At the same time, the analysis level 1 (basic level)was applied based on the fracture toughness CTOD. Then the two assessment levels were compared. The assessment results show that all assessment points are located within the failure lines of analysis levels 0 and 1. So the welded joint of the pipeline is safe. It can be concluded that the assessment based on Charpy absorbed energy is practicable when other fracture toughness data are not available, or cannot be easily obtained. The results are conservative.
基金financial support provided under the Grants RDU190350,RDU190351,and RDU190352.
文摘Fused deposition modeling(FDM)-3D printing has been the favored technology to build functional components in various industries.The present study investigates infill percentage and infill pattern effects on the printed parts’impact properties through the 3D printing technique using coconut wood-filled PLA composites.Mathematical models are also proposed in the present study with the aim for future property prediction.According to the ASTM standard,fifteen specimens with different parameter combinations were printed using a low-cost FDM 3D printer to evaluate their impact properties.Statistical analysis was performed using MINITAB to validate the experimental data and model development.The experimental outcomes reveal the honeycomb pattern with 75%infill density achieves the highest energy absorption(0.837 J)and impact energy(5.1894 kJ/m^(2)).The p-value from statistical analysis clearly shows that all the impact properties are less than the alpha value of 0.05,suggesting all the properties are vital to determine the impact properties.The validation process affirms that the generated mathematical model for the energy absorbed and the impact energy is reliable at an acceptable level to predict their respective properties.The errors between the experimental value and the predicted value are 3.98%for the energy absorbed and 4.06%for impact energy.The findings are expected to provide insights on the impact behavior of the coconut wood-filled PLA composites prepared by FDM-3D printing and a mathematical model to predict the impact properties.
基金National Natural Science Foundation of China (Grant No. 12002045)State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (QNKT22-09) to provide fund for conducting experiments。
文摘Titanium hydride(TiH_(2)), a promising high-energy additive, is doped into PTFE/Al to optimize the energy output structure of the reactive jet and strive for better aftereffect damage ability to the target. Six types of PTFE/Al/TiH_(2) reactive liners with different TiH_(2) content are prepared by the molding and sintering method. The energy release characteristics of PTFE/Al/TiH_(2) reactive jet are tested by the transient explosion energy test, and are characterized from pressure and temperature. The reaction delay time,pressure history, and temperature history of the energy release process are obtained, then the actual value of released energy and reaction efficiency of the reactive jet are calculated. The results show that the peak pressure and temperature of the PTFE/Al/TiH_(2) jet initially increase and then decrease with increasing TiH_(2) content. When the TiH_(2) content is 10%, the actual value of released energy and reaction efficiency increased by 24% and 6.4%, respectively, compared to the PTFE/Al jet. The reaction duration of the reactive material is significantly prolonged as the TiH_(2) content increased from 0% to 30%. Finally,combined with the energy release behaviors of PAT material and the dynamic deformation process of liner, the enhancement mechanism of TiH_(2) on energy release of the reactive jet is expounded.
文摘The automobile industry has been searching for vehicles that use less energy and emit fewer pollutants, which has resulted in a high demand for fuel-efficient vehicles. Because of their higher strength-to-weight ratio compared to traditional steel, using fiber-reinforcement composite materials in automobile bodies has emerged as the most effective strategy for improving fuel efficiency while maintaining safety standards. This research paper examined the utilization of fiber-reinforced composite materials in car bodies to meet the increasing consumer demand for fuel-efficient and eco-friendly vehicles. It particularly focused on a carbon-aramid fiber-reinforced composite impact beam for passenger car side door impact protection. Despite the encouraging prospects of the carbon-aramid fiber-reinforced beam, the research uncovered substantial defects in the fabrication process, resulting in diminished load-bearing capacity and energy absorption. As a result, the beam was un-successful in three-point bending tests. This was accomplished by using an I cross-section design with varying thickness because of the higher area moment of inertia. Vacuum-assisted resin transfer molding (VARTM) manufacturing process was used and the finished beam underwent to three-point bending tests.
基金Supported by National Natural Science Foundation of China(Grant No.52275154)National Key Research and Development Project of China(Grant No.2016YFF0203005).
文摘To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.
文摘The present study investigates the effect of the addition of nanoparticles into epoxy resins as the matrix on the impact absorbed energy of CFRP (carbon fiber reinforced polymer). Impact absorbed energy is one of the main properties to evaluate the CFRP's performance for transportation and aerospace structures. Two types of nanoparticle, namely nanofibers and nano-silica beads, were added into the epoxy resin to improve the impact absorption capacity of the CFRP. Two modified additives and conventional epoxy resins were quantitatively compared. The impact test results showed that impact absorbed energy for nanofibers was higher than nano-silica beads, and nanofibers as the additive promoted about 11% of impact absorbed energy compared with neat epoxy resin.
文摘This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.
文摘Since the terrorist attacks of September 11,the world energy mar-kets have witnessed remarkable changes in Russia’s re-emergenceas a major world energy power and its active development of energydiplomacy.As the signing of agreements at the Russia-America summitand Russia-Europe summit last May as well as at the regular
文摘Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting
基金Project(2011-0006548)supported by the Basic Research Program through the National Research Foundation of Korea
文摘In this work, the damage and penetration behavior of aluminum foam at various types of impact were examined through experiments. The impact energy of a striker was applied on the fixed aluminum foam having a thickness of 25 mm while increasing its impact by 2 J at each strike from 6 J to 16 J. The results show that the impact energies from 6 J to 12 J could not penetrate aluminum foam. However, the aluminum foam applied with the impact energy of 12 J incurred severe damages on its lower part. Finally, the aluminum foam applied with the impact energy of 14 J was penetrated. The striker having the impact energy of 6 J could penetrate aluminum foam around 10 mm. At this moment, aluminum foam could absorb the impact energy of around 9 J. When the impact energy of 14 J was applied on the aluminum foam, the aluminum foam was penetrated and it absorbed the impact energy of around 17.2 J. It is possible to create the safer structure against impact using the results of this work. The simulation results for the verification of the experimental results imply that the results for all the experiments in this work are reliable. It is possible to predict the structural safety of the aluminum foam for an impact if the impact behavior of aluminum foam performed in this work is utilized.
基金Project(2011-0006548) supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education,Science,and Technology,Korea
文摘Impact property of the sandwich composite with aluminum foam core was investigated by experiment and simulation analysis. Impact energies of 50, 70 and 100 J were applied to the specimens in impact tests. The results show that the striker penetrates the upper face sheet, causing the core to be damaged at 50 J test but the lower face sheet remains intact with no damage. At 70 J test, the striker penetrates the upper face sheet and the core,and causes the lower face sheet to be damaged. Finally at 100 J test, the striker penetrates both the upper face sheet and the core, and even the lower face sheet. The experimental and simulation results agree with each other. By the confirmation with the experimental results, all these simulation results can be applied on structure study of real sandwich composite with aluminum foam core effectively.
文摘The mechanical behavior of TiNi alloy and Cr12MoV alloy under dynamic impact loading was investigated with a self-made impact testing system. The real-time contact force was measured with a piezoelectric force sensor and digital signal processing system during impact. Equations for predicting instantaneous velocity anti displacement were presented. The results showed that the TiNi alloy exhibited a plateau of maximum contact force with increasing impact height. At the plateau stage, TiNi alloy in the parent phase can absorb impact energy and keep the maximum contact force nearly identical due to its pseudoelasticity.
文摘The mechanical behaviors of Ti-50.7%Ni shape memory alloy under a dynamic impact loading condition were investigated by a home-built impact testing system. Both the contact force and the contact time during the impact process were measured with a piezoelectric force sensor and a digital signal processing system in real time. The predicted instantaneous velocity and the displacement formulae are presented. Results show that the maximum contact force increased, while the contact time decreased with the increase of the temperature when the TiNi alloy was in a martensitic state. When the compressive stress during the impact process was higher than the critical stress of the stress-induced martensitic transformation, the TiNi alloy specimen in the parent phase left no permanent deformation but could dissipate the impact energy.
基金the Ministry of Education Backbone Teachers Funded Projects
文摘The impact trend of reck-coal system was studied by the method of accumulating and releasing of deformation energy and interaction of rock-coal system. The system model of roof-coal-floor was established. Based on the RFPA software, rock fracture process analysis system, the numerical test of deformation, fracture and energy transmission of nonlinear and nonhomogeneous rock-coal system, and the numerical test and evaluating method of impact trend of reck-coal system were achieved. When the same coal seam was in different roof and floor conditions, the fracture process of reck-coal system can be classified as gradual, sudden and delayed fracture three kinds, and their impact trend can be classified as void, intense and medium correspondingly. The rock-coal system's impact trend is evaluated by the system impact index p and burst expanding forms. The criteria μ are μ〈1.0, 1.0≤μ〈l .5 and μ≥1.5 when the impact trend is void, intense or medium, which are tested and verified by the No.2 and No.4 coal seams in Sun- cun mine.