The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac(NLD)equation.Based on the implicit integration factor(IIF)method,two schemes are proposed.Centra...A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac(NLD)equation.Based on the implicit integration factor(IIF)method,two schemes are proposed.Central differences are applied to the spatial discretization.The semi-discrete scheme keeps the conservation of the charge and energy.For the temporal discretization,second-order IIF method and fourth-order IIF method are applied respectively to the nonlinear system arising from the spatial discretization.Numerical experiments are given to validate the accuracy of these schemes and to discuss the interaction dynamics of the NLD solitary waves.展开更多
In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system an...In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.展开更多
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
基金the National Natural Science Foundation of China(No.11671044)the Science Challenge Project(No.TZ2016001)the Beijing Municipal Education Commission(No.PXM2017014224000020).
文摘A high-order accuracy time discretization method is developed in this paper to solve the one-dimensional nonlinear Dirac(NLD)equation.Based on the implicit integration factor(IIF)method,two schemes are proposed.Central differences are applied to the spatial discretization.The semi-discrete scheme keeps the conservation of the charge and energy.For the temporal discretization,second-order IIF method and fourth-order IIF method are applied respectively to the nonlinear system arising from the spatial discretization.Numerical experiments are given to validate the accuracy of these schemes and to discuss the interaction dynamics of the NLD solitary waves.
基金supported by the Foundation of Liaoning Educational Committee (Grant No. L201604)China Scholarship Council, National Natural Science Foundation of China (Grant Nos. 11571002, 11171281 and 11671044)+1 种基金the Science Foundation of China Academy of Engineering Physics (Grant No. 2015B0101021)the Defense Industrial Technology Development Program (Grant No. B1520133015)
文摘In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.