A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The rati...A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The ratio of the marine species Thalassionema nitzschioides to the intertidal-coastal species complex Cyclotella striata/stylorum serves as a novel proxy for assessing the strength of marine influence.Chronological data,corrected for the local residence time effect,facilitated the construction of a diatom proxy-based marine influence curve for the study area.This curve delineates the dynamics of marine influence and their correlations with paleo-climate fluctuations and the East Asian monsoon variability,as well as their role in chenier formation.Results include:(1)eight periods of intensified marine influence have been documented since 7000 a BP in the study area.The peak of each period,as determined by the diatom proxy,corresponds closely to the warm climatic phases and stronger East Asian summer monsoons,suggesting that the peaks marine influence indicate typically the periods of climatic warmth and monsoon activity intensification in the region;(2)a strong correlation exists between the development of cheniers and marine influence,and chenier formation began with the increasing marine influence and terminated at the end of warm periods as marine influence weakens.The climatic changes in the coastal area,as indicated by the diatom proxy,hold significant potential for future related research endeavors.展开更多
It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. ...It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. However, it is well-known that the K-M estimator is not continuous, thus it can not always be used to calculate quantile residual lifetime. In this paper, the authors propose a kernel smoothing method to give an estimator of quantile residual lifetime. By using modern empirical process techniques, the consistency and the asymptotic normality of the proposed estimator are provided neatly.The authors also present the empirical small sample performances of the estimator. Deficiency is introduced to compare the performance of the proposed estimator with the naive unsmoothed estimator of the quantile residaul lifetime. Further simulation studies indicate that the proposed estimator performs very well.展开更多
基金Supported by the Youth Fund of National Natural Science Foundation of China(No.41806109)the project of China Geological Survey(Nos.DD20230091,DD20211301)。
文摘A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The ratio of the marine species Thalassionema nitzschioides to the intertidal-coastal species complex Cyclotella striata/stylorum serves as a novel proxy for assessing the strength of marine influence.Chronological data,corrected for the local residence time effect,facilitated the construction of a diatom proxy-based marine influence curve for the study area.This curve delineates the dynamics of marine influence and their correlations with paleo-climate fluctuations and the East Asian monsoon variability,as well as their role in chenier formation.Results include:(1)eight periods of intensified marine influence have been documented since 7000 a BP in the study area.The peak of each period,as determined by the diatom proxy,corresponds closely to the warm climatic phases and stronger East Asian summer monsoons,suggesting that the peaks marine influence indicate typically the periods of climatic warmth and monsoon activity intensification in the region;(2)a strong correlation exists between the development of cheniers and marine influence,and chenier formation began with the increasing marine influence and terminated at the end of warm periods as marine influence weakens.The climatic changes in the coastal area,as indicated by the diatom proxy,hold significant potential for future related research endeavors.
基金supported by the National Natural Science Foundation of China under Grant No.71271128the State Key Program of National Natural Science Foundation of China under Grant No.71331006+4 种基金NCMISKey Laboratory of RCSDSCAS and IRTSHUFEPCSIRT(IRT13077)supported by Graduate Innovation Fund of Shanghai University of Finance and Economics under Grant No.CXJJ-2011-429
文摘It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. However, it is well-known that the K-M estimator is not continuous, thus it can not always be used to calculate quantile residual lifetime. In this paper, the authors propose a kernel smoothing method to give an estimator of quantile residual lifetime. By using modern empirical process techniques, the consistency and the asymptotic normality of the proposed estimator are provided neatly.The authors also present the empirical small sample performances of the estimator. Deficiency is introduced to compare the performance of the proposed estimator with the naive unsmoothed estimator of the quantile residaul lifetime. Further simulation studies indicate that the proposed estimator performs very well.