The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected ...Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.展开更多
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici...Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.展开更多
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
In accordance with the requirements of expanding Machine-To-Machine communication (M2M), the network overlay is in progress in several domains such as Smart Grid. Consequently, it is predictable that opportunities and...In accordance with the requirements of expanding Machine-To-Machine communication (M2M), the network overlay is in progress in several domains such as Smart Grid. Consequently, it is predictable that opportunities and cases of integrating yielded data from devices such as sensors will increase more. Accordingly, the importance of Ontology and Information Models (IM) which normalize the semantics including sensor expressions, have increased, and the standards of these definitions have been more important as well. So far, there have been multiple initiatives for standardizing the Ontology and IM in regards to the sensors expression such as Sensor Standards Harmonization by the National Institute of Standards and Technology (NIST), W3C Semantic Sensor Network (SSN) and the recent W3C IoT-Lite Ontology. However, there is still room to improve the current level of the Ontology and IM on the viewpoint of the implementing structure. This paper presents a set of IMs on abstract sensors and contexts in regards to the phenomenon around these sensors from the point of view of a structure implementing these specified sensors. As several previous studies have pointed out, multiple aspects on the sensors should be modeled. Accordingly, multiple sets of Ontology and IM on these sensors should be defined. Our study has intended to clarify the relationship between configurations and physical measured quantities of the structures implementing a set of sensors. Up to present, they have not been generalized and have remained unformulated. Consequently, due to the result of this analysis, it is expected to implement a more generalized translator module easily, which aggregates the measured data from the sensors on the middleware level managing these Ontology and IM, instead of the layer of user application programs.展开更多
Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequen...Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.展开更多
In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framewor...In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framework was proposed to solve the problem of“information island”caused by the differentiated data interface between heterogeneous equipment and system in tufting carpet machine workshop.This paper established an information model of tufting carpet machine based on analyzing the system architecture,workshop equipment composition and information flow of the workshop,combined with the OPC UA information modeling specification.Subsequently,the OPC UA protocol is used to instantiate and map the information model,and the OPC UA server is developed.Finally,the practicability of tufting carpet machine information model under the OPC UA framework and the feasibility of realizing the information interconnection of heterogeneous devices in the tufting carpet machine digital workshop are verified.On this basis,the cloud and remote access to the underlying device data are realized.The application of this information model and information integration scheme in actual production explores and practices the application of OPC UA technology in the digital workshop of tufting carpet machine.展开更多
Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes...Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM)</span><span style="font-family:Verdana;"> in Nairobi Kenya</span><span style="font-family:Verdana;">. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM;when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.展开更多
AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) c...AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) can contribute in augmenting visualization during design, construction and operation of the buildings. This article presents a study that applies AR to building assessment with BIM (building information) model visualization. The use of AR on existing applications for smart phones and tablets is validated. AR proposed an adaptation of the method of POE (post-occupancy evaluation) subsidized. Traditional POE process model involves three phases: planning, conducting and applying. In order to incorporate AR, it is proposed a total restructuring of the planning phase, developing the research instruments in three steps: 3D modeling, model treatment and AR application development. It was observed that for POE studies, the 3D models are in large scale and need to be detailed for precise comparison. BIM models for facility management, representing building use situation, are of the highest level of detail. A balanced point between simplicity and representativeness was the solution adopted in this experiment for uploading and downloading performance issues. This article presents and discusses findings for the new proposition for the activity of research instruments development for the planning phase of POE with AR as well as initial tests with first results and difficulties faced.展开更多
The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model ...The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5<sup>th</sup> information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example of the USA) on the upward stage of the 6<sup>th</sup> LW (2018-2042), engendered by the digital technologies of the 4<sup>th</sup> Industrial Revolution is given. It is also demonstrated that the symbiosis of human and intelligent machine (IM) is the driving force in the digital economy, where man plays the leading role organizing effective and efficient mutual work. Authors suggest a mathematical model for calculating labour productivity in the digital economy, where the symbiosis of “human + IM” is widely used. The calculations carried out with the help of the model show: 1) the symbiosis of “human + IM” from the very beginning lets to realize the possibilities of increasing work performance in the economy with the help of digital technologies;2) the largest labour productivity is achieved in the symbiosis of “human + IM”, where man labour prevails, and the lowest labour productivity is seen where the largest part of the work is performed by IM;3) developed countries may achieve labour productivity of 3% per year by the mid-2020s, which has all the chances to stay up to the 2040s.展开更多
Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construc...Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construction sustainability tools, methods and techniques, a greener design can be applied during various building phases. In this connection, it is argued that the analytical and integrated models applied by Building Information Modelling (BIM) may also facilitate this process to be performed more efficiently. BIM and construction sustainability are quite different initiatives, but both have received much attention in recent years in the architecture, engineering and construction (AEC) industry. A rigorous analysis of the interactions between them implies that a synergy exists which, if properly it is understood that can be helpful to reduce the environmental impacts of the AEC industry. A BIM-based design model can contribute to sustainability through its three main dimensions which are environmental, economic and social. In this paper, by reviewing the existing literature on BIM and construction sustainability and using a matrix to analyze construction sustainability dimensions and BIM functionalities a number of interactions have been discussed. It can be concluded that despite there are many improvements in implementation of BIM in environmental and economic aspects of sustainability, its potential impact on social dimension has not been explicitly explored hence further studies need to be undertaken in this area.展开更多
A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. ...A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.展开更多
With the rapid development of construction engineering and municipal engineering in recent years, water supply and drainage technology has gradually matured. Building water supply and drainage design contains the desi...With the rapid development of construction engineering and municipal engineering in recent years, water supply and drainage technology has gradually matured. Building water supply and drainage design contains the design of rainwater drainage, sewage drainage design, water supply design and fire water supply design. At present, the research on the life cycle assessment of urban drainage system is mainly focused on the sewage treatment plant, therefore in this paper we introduce the theoretical basis of life cycle assessment. In the era of information network, building information model(BIM) technology is widely applied to the design of building water supply and drainage, which and effectively improves the design effi ciency, and makes up for the traditional water supply and drainage design of a lot of problems. In this paper, we analyze the development trend of water supply and drainage engineering based on life cycle assessment and building information model.展开更多
Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserv...Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.展开更多
The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, buildi...The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.展开更多
This paper resumes a research project developed in the concession area of AES Eletropaulo, the largest electrical energy distribution company in Brazil. First, the global standards of information exchange within power...This paper resumes a research project developed in the concession area of AES Eletropaulo, the largest electrical energy distribution company in Brazil. First, the global standards of information exchange within power transmission and distribution area were evaluated, allowing the definition of state of the art on the theme, followed by determining its applications considering technologies already applied by the company. The specifications needed for the generation of a data integration model are adapted to radial overhead network at company concession area. The project developed an intermediary connectivity layer, based on the CIM (common information model), which enables corporative systems to communicate in a standard way, through the use of integrating technologies. It, therefore, enabled modeling all main subjects of an electrical network in an open, extensible and non-proprietary way, in a model that contains classes and attributes of such subjects, as well as their relationships. Calculation and planning products adopted by the company were integrated to the technological layer implemented.展开更多
During the initial design phases of complex multi-disciplinary systems such as urban tunnelling,the appraisal of different design alternatives can ensure optimal designs in terms of costs,construction time,and safety....During the initial design phases of complex multi-disciplinary systems such as urban tunnelling,the appraisal of different design alternatives can ensure optimal designs in terms of costs,construction time,and safety.To enable the evaluation of a large number of design scenarios and to find an optimal solution that minimises impact of tunnelling on existing structures,the design and assessment process must be efficient,yet provide a holistic view of soil-structure interaction effects.This paper proposes an integrated tunnel design tool for the initial design phases to predict the ground settlements induced by tunnelling and building damage using empirical and analytical solutions as well as simulation-based meta models.Furthermore,visualisation of ground settlements and building damage risk is enabled by integrating empirical and analytical models within our Building Information Modelling(BIM)framework for tunnelling.This approach allows for near real-time assessment of structural damage induced by settlements with consideration of soil-structure interaction and non-linear material behaviour.Furthermore,because this approach is implemented on a BIM platform for tunnelling,first,the design can be optimised directly in the design environment,thus eliminating errors in data exchange between designers and computational analysts.Secondly,the effect of tunnelling on existing structures can be effectively visualised within the BIM by producing risk-maps and visualising the scaled deformation field,which allows for a more intuitive understanding of design actions and for collaborative design.Having a fully parametric design model and real-time predictions therefore enables the assessment and visualisation of tunneling-induced damage for large tunnel sections and multiple structures in an effective and computationally efficient way.展开更多
This study introduces a Landscape Information Modeling±Stable Diffusion(LIM±SD)-based digital workflow for ecological engineered landscaping(EEL)design,focusing on urban river wetlands.It explores how studen...This study introduces a Landscape Information Modeling±Stable Diffusion(LIM±SD)-based digital workflow for ecological engineered landscaping(EEL)design,focusing on urban river wetlands.It explores how students from diverse academic backgrounds perform EEL tasks using the LIM±SD approach.A total of 30 participants,including industrial design postgraduates and landscape architecture undergraduates and postgraduates,completed the design tasks.The efficacy of their designs was assessed through expert evaluations on site appropriateness,aesthetics,spatial layout,and eco-engineering techniques of the design proposals,as well as the parametric simulation which calculated the vegetation coverage rate and proportion of riparian areas for each design.Moreover,evaluation of participants’subjective design experiences was conducted via questionnaires.Results indicated that landscape architecture postgraduates outperformed others applying ecological engineering principles.The study also elucidated discrepancies between LIM models and SD-generated renderings,as well as the uncertainty of SDgenerated renderings,suggesting improvements are needed to align digital outputs with ecological design criteria.展开更多
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac...This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.展开更多
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
基金Financial support for this research was provided in part by the US Army Corps of Engineers through a subaward from the University of California,San Diego,USA。
文摘Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.
基金supported by a grant(No.14DZ2292800,http://www.greengeo.net/)from“Technology Service Platform of Civil Engineering”of Science and Technology Commission of Shanghai Municipality.
文摘Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
文摘In accordance with the requirements of expanding Machine-To-Machine communication (M2M), the network overlay is in progress in several domains such as Smart Grid. Consequently, it is predictable that opportunities and cases of integrating yielded data from devices such as sensors will increase more. Accordingly, the importance of Ontology and Information Models (IM) which normalize the semantics including sensor expressions, have increased, and the standards of these definitions have been more important as well. So far, there have been multiple initiatives for standardizing the Ontology and IM in regards to the sensors expression such as Sensor Standards Harmonization by the National Institute of Standards and Technology (NIST), W3C Semantic Sensor Network (SSN) and the recent W3C IoT-Lite Ontology. However, there is still room to improve the current level of the Ontology and IM on the viewpoint of the implementing structure. This paper presents a set of IMs on abstract sensors and contexts in regards to the phenomenon around these sensors from the point of view of a structure implementing these specified sensors. As several previous studies have pointed out, multiple aspects on the sensors should be modeled. Accordingly, multiple sets of Ontology and IM on these sensors should be defined. Our study has intended to clarify the relationship between configurations and physical measured quantities of the structures implementing a set of sensors. Up to present, they have not been generalized and have remained unformulated. Consequently, due to the result of this analysis, it is expected to implement a more generalized translator module easily, which aggregates the measured data from the sensors on the middleware level managing these Ontology and IM, instead of the layer of user application programs.
文摘Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.
文摘In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framework was proposed to solve the problem of“information island”caused by the differentiated data interface between heterogeneous equipment and system in tufting carpet machine workshop.This paper established an information model of tufting carpet machine based on analyzing the system architecture,workshop equipment composition and information flow of the workshop,combined with the OPC UA information modeling specification.Subsequently,the OPC UA protocol is used to instantiate and map the information model,and the OPC UA server is developed.Finally,the practicability of tufting carpet machine information model under the OPC UA framework and the feasibility of realizing the information interconnection of heterogeneous devices in the tufting carpet machine digital workshop are verified.On this basis,the cloud and remote access to the underlying device data are realized.The application of this information model and information integration scheme in actual production explores and practices the application of OPC UA technology in the digital workshop of tufting carpet machine.
文摘Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM)</span><span style="font-family:Verdana;"> in Nairobi Kenya</span><span style="font-family:Verdana;">. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM;when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.
文摘AR (augmented reality) is a technology that adds information to the real world adding virtual elements to its visualization in real time. AR used in AECO (architectural, engineering, construction and operations) can contribute in augmenting visualization during design, construction and operation of the buildings. This article presents a study that applies AR to building assessment with BIM (building information) model visualization. The use of AR on existing applications for smart phones and tablets is validated. AR proposed an adaptation of the method of POE (post-occupancy evaluation) subsidized. Traditional POE process model involves three phases: planning, conducting and applying. In order to incorporate AR, it is proposed a total restructuring of the planning phase, developing the research instruments in three steps: 3D modeling, model treatment and AR application development. It was observed that for POE studies, the 3D models are in large scale and need to be detailed for precise comparison. BIM models for facility management, representing building use situation, are of the highest level of detail. A balanced point between simplicity and representativeness was the solution adopted in this experiment for uploading and downloading performance issues. This article presents and discusses findings for the new proposition for the activity of research instruments development for the planning phase of POE with AR as well as initial tests with first results and difficulties faced.
文摘The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5<sup>th</sup> information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example of the USA) on the upward stage of the 6<sup>th</sup> LW (2018-2042), engendered by the digital technologies of the 4<sup>th</sup> Industrial Revolution is given. It is also demonstrated that the symbiosis of human and intelligent machine (IM) is the driving force in the digital economy, where man plays the leading role organizing effective and efficient mutual work. Authors suggest a mathematical model for calculating labour productivity in the digital economy, where the symbiosis of “human + IM” is widely used. The calculations carried out with the help of the model show: 1) the symbiosis of “human + IM” from the very beginning lets to realize the possibilities of increasing work performance in the economy with the help of digital technologies;2) the largest labour productivity is achieved in the symbiosis of “human + IM”, where man labour prevails, and the lowest labour productivity is seen where the largest part of the work is performed by IM;3) developed countries may achieve labour productivity of 3% per year by the mid-2020s, which has all the chances to stay up to the 2040s.
文摘Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construction sustainability tools, methods and techniques, a greener design can be applied during various building phases. In this connection, it is argued that the analytical and integrated models applied by Building Information Modelling (BIM) may also facilitate this process to be performed more efficiently. BIM and construction sustainability are quite different initiatives, but both have received much attention in recent years in the architecture, engineering and construction (AEC) industry. A rigorous analysis of the interactions between them implies that a synergy exists which, if properly it is understood that can be helpful to reduce the environmental impacts of the AEC industry. A BIM-based design model can contribute to sustainability through its three main dimensions which are environmental, economic and social. In this paper, by reviewing the existing literature on BIM and construction sustainability and using a matrix to analyze construction sustainability dimensions and BIM functionalities a number of interactions have been discussed. It can be concluded that despite there are many improvements in implementation of BIM in environmental and economic aspects of sustainability, its potential impact on social dimension has not been explicitly explored hence further studies need to be undertaken in this area.
文摘A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.
文摘With the rapid development of construction engineering and municipal engineering in recent years, water supply and drainage technology has gradually matured. Building water supply and drainage design contains the design of rainwater drainage, sewage drainage design, water supply design and fire water supply design. At present, the research on the life cycle assessment of urban drainage system is mainly focused on the sewage treatment plant, therefore in this paper we introduce the theoretical basis of life cycle assessment. In the era of information network, building information model(BIM) technology is widely applied to the design of building water supply and drainage, which and effectively improves the design effi ciency, and makes up for the traditional water supply and drainage design of a lot of problems. In this paper, we analyze the development trend of water supply and drainage engineering based on life cycle assessment and building information model.
文摘Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.
文摘The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.
文摘This paper resumes a research project developed in the concession area of AES Eletropaulo, the largest electrical energy distribution company in Brazil. First, the global standards of information exchange within power transmission and distribution area were evaluated, allowing the definition of state of the art on the theme, followed by determining its applications considering technologies already applied by the company. The specifications needed for the generation of a data integration model are adapted to radial overhead network at company concession area. The project developed an intermediary connectivity layer, based on the CIM (common information model), which enables corporative systems to communicate in a standard way, through the use of integrating technologies. It, therefore, enabled modeling all main subjects of an electrical network in an open, extensible and non-proprietary way, in a model that contains classes and attributes of such subjects, as well as their relationships. Calculation and planning products adopted by the company were integrated to the technological layer implemented.
文摘During the initial design phases of complex multi-disciplinary systems such as urban tunnelling,the appraisal of different design alternatives can ensure optimal designs in terms of costs,construction time,and safety.To enable the evaluation of a large number of design scenarios and to find an optimal solution that minimises impact of tunnelling on existing structures,the design and assessment process must be efficient,yet provide a holistic view of soil-structure interaction effects.This paper proposes an integrated tunnel design tool for the initial design phases to predict the ground settlements induced by tunnelling and building damage using empirical and analytical solutions as well as simulation-based meta models.Furthermore,visualisation of ground settlements and building damage risk is enabled by integrating empirical and analytical models within our Building Information Modelling(BIM)framework for tunnelling.This approach allows for near real-time assessment of structural damage induced by settlements with consideration of soil-structure interaction and non-linear material behaviour.Furthermore,because this approach is implemented on a BIM platform for tunnelling,first,the design can be optimised directly in the design environment,thus eliminating errors in data exchange between designers and computational analysts.Secondly,the effect of tunnelling on existing structures can be effectively visualised within the BIM by producing risk-maps and visualising the scaled deformation field,which allows for a more intuitive understanding of design actions and for collaborative design.Having a fully parametric design model and real-time predictions therefore enables the assessment and visualisation of tunneling-induced damage for large tunnel sections and multiple structures in an effective and computationally efficient way.
文摘This study introduces a Landscape Information Modeling±Stable Diffusion(LIM±SD)-based digital workflow for ecological engineered landscaping(EEL)design,focusing on urban river wetlands.It explores how students from diverse academic backgrounds perform EEL tasks using the LIM±SD approach.A total of 30 participants,including industrial design postgraduates and landscape architecture undergraduates and postgraduates,completed the design tasks.The efficacy of their designs was assessed through expert evaluations on site appropriateness,aesthetics,spatial layout,and eco-engineering techniques of the design proposals,as well as the parametric simulation which calculated the vegetation coverage rate and proportion of riparian areas for each design.Moreover,evaluation of participants’subjective design experiences was conducted via questionnaires.Results indicated that landscape architecture postgraduates outperformed others applying ecological engineering principles.The study also elucidated discrepancies between LIM models and SD-generated renderings,as well as the uncertainty of SDgenerated renderings,suggesting improvements are needed to align digital outputs with ecological design criteria.
文摘This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.