In view of the rapid decline rate of oil production and gradual increase of water cut in oil wells in Block S, based on the determination of the formula of foam profile control agent, the optimization study of foam pr...In view of the rapid decline rate of oil production and gradual increase of water cut in oil wells in Block S, based on the determination of the formula of foam profile control agent, the optimization study of foam profile control injection scheme was carried out. Petrel software is used to establish a facies controlled geological model based on stochastic modeling method in Block S, and CMG software is used for numerical simulation to design 7 sets of foam profile control prediction schemes. Dynamic data and numerical simulation methods are used to optimize foam injection mode and injection cycle. By simulating and calculating, the optimal injection method of alternating gas and liquid injection and the optimal plan with an injection period of 2 months were selected. Through the calculation results of various research plans, it can be seen that the water content of the optimal plan has decreased significantly, and the oil production rate has increased significantly, in order to slow down production decline, control water content rise, extend the economic recovery period of the oilfield, and achieve the goal of improving oil recovery.展开更多
The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupl...The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.展开更多
A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special d...A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.展开更多
The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence m...The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence method aided by water injection is proposed. Numeral analysis is adopted to simulate the effects of this method for the north anchor of Taizhou Bridge, which confirmed the feasibility and validity. Finally, the method is applied to the north anchor caisson during the caisson sinking procedure and helps the caisson sink and embed to the designed position smoothly.展开更多
OBJECTIVE: To compare the clinical effect of brachial plexus block with "One Injection Two Points" guided under ultrasound and the conventional method guiding by ultrasound. METHODS: 70 patients were randomi...OBJECTIVE: To compare the clinical effect of brachial plexus block with "One Injection Two Points" guided under ultrasound and the conventional method guiding by ultrasound. METHODS: 70 patients were randomized evenly into 2 groups, with 35 patients in each group, while the Experiment Group(Group B) received One Injection Two Points" method, the Control Group(Group A) received the conventional method.The nerve block every 5 s, the success rate of anesthesia, the dosage of local anesthetics, second remedial anesthesia, adverse reactions, etc.were recorded. RESULTS: Group B was superior to group A in the success rate of anesthesia; There were 6 patients in group A who required constant pump injection of Remifentanil to remedy, while no patients in Group B needed remedy treatment. There were no serious adverse reactions in both groups.CONCLUSIONS: The clinical effect of brachial plexus block with "One Injection Two Points" method guided under ultrasoundguiding by ultrasound was superior to that of the conventional method.展开更多
Based on the accurate and efficient thermal injection method, we develop a fully analytical surface potential model for the heterojunction tunnel field-effect transistor(H-TFET). This model accounts for both the effec...Based on the accurate and efficient thermal injection method, we develop a fully analytical surface potential model for the heterojunction tunnel field-effect transistor(H-TFET). This model accounts for both the effects of source depletion and inversion charge, which are the key factors influencing the charge, capacitance and current in H-TFET. The accuracy of the model is validated against TCAD simulation and is greatly improved in comparison with the conventional model based on Maxwell–Boltzmann approximation. Furthermore, the dependences of the surface potential and electric field on biases are well predicted and thoroughly analyzed.展开更多
Metal-halide perovskite nanocrystals(NCs)have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications.Despite their exceptional optical properties,the impac...Metal-halide perovskite nanocrystals(NCs)have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications.Despite their exceptional optical properties,the impact of different synthetic strategies on the fundamental nature of NCs,such as nonradiative recombination centers,remains poorly understood.In this study,we investigated the photophysical properties of CsPbBr_(3) NCs synthesized using two distinct methods,hot injection and ligand-assisted reprecipitation,at the individual particle level.We observed different blinking behaviors under specific photoexcitation power densities and proposed,through intensity-lifetime analysis and Monte-Carlo simulations,that these different synthetic strategies can fabricate NCs with similar crystal structures but distinct surface quenchers with varying energy levels,which significantly affected the photo-induced blinking-down and blinking-up behaviors in individual NCs.Our findings indicate a practical and feasible approach for controlling defect engineering in perovskite NCs,with significant implications for their use in optoelectronic and other technological applications.展开更多
This paper presents the developments of sensorless control of interior permanent magnet synchronous machine(IPMSM)for last 10 years,which could be divided into the past and the present for each 5 years.Several popular...This paper presents the developments of sensorless control of interior permanent magnet synchronous machine(IPMSM)for last 10 years,which could be divided into the past and the present for each 5 years.Several popular methods developed for last 10 years would be described and evaluated,and the limitations with the methods are discussed.In the past a concept extended EMF(EEMF)was introduced and it can model IPMSM as a non-salient motor,meaning that the representation of IPMSM in the estimated rotor reference frame would be much simpler and accurate.However,because it still relied on back EMF,standstill operation was impossible.And,the position control of IPMSM could not be achieved with EEMF concept.For sensorless drive,the high-frequency signal injection method exploiting inherent saliency of IPMSM has been continuously developed for last 10 years and applied to various industry fields,where torque control at standstill is essential.Its performance has been improved but there are still many problems to be solved.In the present,the square-wave signal injection at estimated d-axis has improved the control performance conspicuously.However,there are strong demands to improve the control performance of sensorless drive,yet.Based on the problems in the present,in this paper the possible developments of sensorless drive of IPMSM in next 5 years are enlightened as the future of sensorless control.展开更多
Small amounts of metallic impurity is injected by laser blow-off on HL-2A tokamak in order to study transport phenomena. The particle transport is interpretated along
Background: Jejunal feeding tube allows the nutrition of critical care patients more easy and safe. However, its placement remains a challenge. This study aimed to introduce a jejunal feeding tube through an ultrasou...Background: Jejunal feeding tube allows the nutrition of critical care patients more easy and safe. However, its placement remains a challenge. This study aimed to introduce a jejunal feeding tube through an ultrasound-guided antral progressive water injection method and subsequently to examine its efficacy. Methods: Between April 2016 and April 2017, 54 patients hospitalized in the Department of Critical Care Medicine, Peking Union Medical College Hospital, China who needed nutritional support through a jejunal feeding tube were recruited for this study. Patients who applied ultrasound-guided antral progressive water injection method were classified into the experimental group. Patients who applied conventional method were registered as control group. Results: No significant differences were found in age, body mass index, and Acute Physiology and Chronic Health Evaluation score, but a significant difference in operation time was found between the experimental group and the control group. Of the 24 individuals in the control group, 17 displayed clear catheter sound shadows once the tube entered the esophagus. In comparison, of the 30 individuals in the experimental group, all harbored catheter sound shadows through the esophageal gas injection method. Subsequent observation revealed that in the control group (via ultrasonographic observation), 15 individuals underwent successthl antral tube entry, for a success rate of 63%. In the experimental group (via antral progressive water injection), 27 individuals underwent successful antral tube entry, for a success rate of 90%. There was a significant difference between the success rates of the two groups (x2 = 5.834, P= 0.022). Conclusion: The antral progressive water injection method for the placement of a jejunal feeding tube is more effective than the traditional ultrasonic placement method.展开更多
This paper addresses the problem of wide speed range sensorless control of induction motor.The proposed method is based on model reference adaptive system (MRAS),in which the current model serves as the adjustable mod...This paper addresses the problem of wide speed range sensorless control of induction motor.The proposed method is based on model reference adaptive system (MRAS),in which the current model serves as the adjustable model,and a novel hybrid model integrating the modified voltage model (MVM) and high-frequency signal injection method (HFSIM) are established to serve as the reference model.The HFSIM works together with MVM to improve the performance of the rotor speed and rotor flux position estimation at low speed,whereas at high speed,the MVM acts alone.In addition,a rotor resistance online estimation scheme is proposed to update the rotor resistance contained in the adjustable model and to ensure the estimation accuracy further.Experimental results show that the proposed MRAS method is very effective from low to high speed range,including zero speed.展开更多
Aiming at resolving the limitation of the speed regulation range of sensorless control technology,a new composite sensorless control strategy is proposed to realize a control method for a permanent magnet synchronous ...Aiming at resolving the limitation of the speed regulation range of sensorless control technology,a new composite sensorless control strategy is proposed to realize a control method for a permanent magnet synchronous motor(PMSM)in full speed range.In the medium-and high-speed range,the improved new sliding mode observer method is used to estimate the motor speed and rotor position information.In the zero and low speed range,in order to avoid the defects of the sliding mode method,the rotating high-frequency voltage signal injection method is used.When switching between low,medium,and high speed,the fuzzy control algorithm is adopted to achieve smooth transitions.The simulation experiment results show that the hybrid mode combining the sliding mode observer and rotating high-frequency voltage injection methods,can effectively reduce the jitter in the algorithm switching process,and realize the smooth control of a PMSM in full speed range.展开更多
The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas sampl...The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination(R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1,2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area(%) in comparison with the averaged relative peak area of each method at 0 day.The indices of the bottle full of water method were the lowest(99.5%–108.5%) compared to the indices of vacuum bag and vacuum vial methods(119%–217%). Meanwhile, the gas chromatograph determination of other gas components(O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.展开更多
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b...lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.展开更多
In this paper,a model of a large-scale optimal power flow(OPF)under voltage grading and network partition and its algorithm is presented.Based on the principles of open loop operations,the node injecting current metho...In this paper,a model of a large-scale optimal power flow(OPF)under voltage grading and network partition and its algorithm is presented.Based on the principles of open loop operations,the node injecting current method is used to divide the large-scale power grid into voltage grading and district dividing structures.The power network is further divided into a high-voltage main network and several subnets according to voltage levels of 220 kV.The subnets are connected by means of boundary nodes,and the partition model is solved using the improved approximate Newton direction method,which achieves complete dynamic decoupling simply by exchanging boundary variables between the main network and the subnets.A largescale power grid thus is decomposed into many subnets,making the solution of the problem simpler and faster while helping to protect the information of individual subnets.The system is tested for correctness and effectiveness of the proposed model,and the results obtained are matched in real-time.Finally,the algorithm is seen to have good convergence while improving calculation speed.展开更多
文摘In view of the rapid decline rate of oil production and gradual increase of water cut in oil wells in Block S, based on the determination of the formula of foam profile control agent, the optimization study of foam profile control injection scheme was carried out. Petrel software is used to establish a facies controlled geological model based on stochastic modeling method in Block S, and CMG software is used for numerical simulation to design 7 sets of foam profile control prediction schemes. Dynamic data and numerical simulation methods are used to optimize foam injection mode and injection cycle. By simulating and calculating, the optimal injection method of alternating gas and liquid injection and the optimal plan with an injection period of 2 months were selected. Through the calculation results of various research plans, it can be seen that the water content of the optimal plan has decreased significantly, and the oil production rate has increased significantly, in order to slow down production decline, control water content rise, extend the economic recovery period of the oilfield, and achieve the goal of improving oil recovery.
基金Supported by the National Basic Research Program of China(2012CB025903)the National Natural Science Foundation of China(91434201,11402210)
文摘The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.
基金Postdoctoral Foundation of China(No.20070410755)PAN Zhencun,born in 1962,male,postdoctor researcher.
文摘A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-160)
文摘The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence method aided by water injection is proposed. Numeral analysis is adopted to simulate the effects of this method for the north anchor of Taizhou Bridge, which confirmed the feasibility and validity. Finally, the method is applied to the north anchor caisson during the caisson sinking procedure and helps the caisson sink and embed to the designed position smoothly.
文摘OBJECTIVE: To compare the clinical effect of brachial plexus block with "One Injection Two Points" guided under ultrasound and the conventional method guiding by ultrasound. METHODS: 70 patients were randomized evenly into 2 groups, with 35 patients in each group, while the Experiment Group(Group B) received One Injection Two Points" method, the Control Group(Group A) received the conventional method.The nerve block every 5 s, the success rate of anesthesia, the dosage of local anesthetics, second remedial anesthesia, adverse reactions, etc.were recorded. RESULTS: Group B was superior to group A in the success rate of anesthesia; There were 6 patients in group A who required constant pump injection of Remifentanil to remedy, while no patients in Group B needed remedy treatment. There were no serious adverse reactions in both groups.CONCLUSIONS: The clinical effect of brachial plexus block with "One Injection Two Points" method guided under ultrasoundguiding by ultrasound was superior to that of the conventional method.
基金Project supported in part by the National Natural Science Foundation of China (Grant No. 62104192)in part by the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2021JQ-717)。
文摘Based on the accurate and efficient thermal injection method, we develop a fully analytical surface potential model for the heterojunction tunnel field-effect transistor(H-TFET). This model accounts for both the effects of source depletion and inversion charge, which are the key factors influencing the charge, capacitance and current in H-TFET. The accuracy of the model is validated against TCAD simulation and is greatly improved in comparison with the conventional model based on Maxwell–Boltzmann approximation. Furthermore, the dependences of the surface potential and electric field on biases are well predicted and thoroughly analyzed.
基金supported by the National Natural Science Foundation of China(Nos.22073046,62011530133)the Fundamental Research Funds for the Central Universities(Nos.020514380256,020514380278)+1 种基金the Double-Innovation Doctor Program of Jiangsu Province,China(No.JSSCBS20211151)the Funding for School-level Research Projects of Yancheng Institute of Technology(No.xjr2021062).
文摘Metal-halide perovskite nanocrystals(NCs)have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications.Despite their exceptional optical properties,the impact of different synthetic strategies on the fundamental nature of NCs,such as nonradiative recombination centers,remains poorly understood.In this study,we investigated the photophysical properties of CsPbBr_(3) NCs synthesized using two distinct methods,hot injection and ligand-assisted reprecipitation,at the individual particle level.We observed different blinking behaviors under specific photoexcitation power densities and proposed,through intensity-lifetime analysis and Monte-Carlo simulations,that these different synthetic strategies can fabricate NCs with similar crystal structures but distinct surface quenchers with varying energy levels,which significantly affected the photo-induced blinking-down and blinking-up behaviors in individual NCs.Our findings indicate a practical and feasible approach for controlling defect engineering in perovskite NCs,with significant implications for their use in optoelectronic and other technological applications.
文摘This paper presents the developments of sensorless control of interior permanent magnet synchronous machine(IPMSM)for last 10 years,which could be divided into the past and the present for each 5 years.Several popular methods developed for last 10 years would be described and evaluated,and the limitations with the methods are discussed.In the past a concept extended EMF(EEMF)was introduced and it can model IPMSM as a non-salient motor,meaning that the representation of IPMSM in the estimated rotor reference frame would be much simpler and accurate.However,because it still relied on back EMF,standstill operation was impossible.And,the position control of IPMSM could not be achieved with EEMF concept.For sensorless drive,the high-frequency signal injection method exploiting inherent saliency of IPMSM has been continuously developed for last 10 years and applied to various industry fields,where torque control at standstill is essential.Its performance has been improved but there are still many problems to be solved.In the present,the square-wave signal injection at estimated d-axis has improved the control performance conspicuously.However,there are strong demands to improve the control performance of sensorless drive,yet.Based on the problems in the present,in this paper the possible developments of sensorless drive of IPMSM in next 5 years are enlightened as the future of sensorless control.
文摘Small amounts of metallic impurity is injected by laser blow-off on HL-2A tokamak in order to study transport phenomena. The particle transport is interpretated along
文摘Background: Jejunal feeding tube allows the nutrition of critical care patients more easy and safe. However, its placement remains a challenge. This study aimed to introduce a jejunal feeding tube through an ultrasound-guided antral progressive water injection method and subsequently to examine its efficacy. Methods: Between April 2016 and April 2017, 54 patients hospitalized in the Department of Critical Care Medicine, Peking Union Medical College Hospital, China who needed nutritional support through a jejunal feeding tube were recruited for this study. Patients who applied ultrasound-guided antral progressive water injection method were classified into the experimental group. Patients who applied conventional method were registered as control group. Results: No significant differences were found in age, body mass index, and Acute Physiology and Chronic Health Evaluation score, but a significant difference in operation time was found between the experimental group and the control group. Of the 24 individuals in the control group, 17 displayed clear catheter sound shadows once the tube entered the esophagus. In comparison, of the 30 individuals in the experimental group, all harbored catheter sound shadows through the esophageal gas injection method. Subsequent observation revealed that in the control group (via ultrasonographic observation), 15 individuals underwent successthl antral tube entry, for a success rate of 63%. In the experimental group (via antral progressive water injection), 27 individuals underwent successful antral tube entry, for a success rate of 90%. There was a significant difference between the success rates of the two groups (x2 = 5.834, P= 0.022). Conclusion: The antral progressive water injection method for the placement of a jejunal feeding tube is more effective than the traditional ultrasonic placement method.
基金supported by the National Basic Research Program of China (973 Program) (No. 2007CB714006)
文摘This paper addresses the problem of wide speed range sensorless control of induction motor.The proposed method is based on model reference adaptive system (MRAS),in which the current model serves as the adjustable model,and a novel hybrid model integrating the modified voltage model (MVM) and high-frequency signal injection method (HFSIM) are established to serve as the reference model.The HFSIM works together with MVM to improve the performance of the rotor speed and rotor flux position estimation at low speed,whereas at high speed,the MVM acts alone.In addition,a rotor resistance online estimation scheme is proposed to update the rotor resistance contained in the adjustable model and to ensure the estimation accuracy further.Experimental results show that the proposed MRAS method is very effective from low to high speed range,including zero speed.
基金Supported by the National Natural Science Foundation of China(51907061)Natural Science Foundation of Hunan Province(2018JJ2100,2019JJ50119).
文摘Aiming at resolving the limitation of the speed regulation range of sensorless control technology,a new composite sensorless control strategy is proposed to realize a control method for a permanent magnet synchronous motor(PMSM)in full speed range.In the medium-and high-speed range,the improved new sliding mode observer method is used to estimate the motor speed and rotor position information.In the zero and low speed range,in order to avoid the defects of the sliding mode method,the rotating high-frequency voltage signal injection method is used.When switching between low,medium,and high speed,the fuzzy control algorithm is adopted to achieve smooth transitions.The simulation experiment results show that the hybrid mode combining the sliding mode observer and rotating high-frequency voltage injection methods,can effectively reduce the jitter in the algorithm switching process,and realize the smooth control of a PMSM in full speed range.
基金supported by the National Natural Science Foundation of China (No.41301575)Special Preliminary Study Program of the National Basic Research Program (973) of China (No. 2012CB426503)
文摘The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination(R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1,2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area(%) in comparison with the averaged relative peak area of each method at 0 day.The indices of the bottle full of water method were the lowest(99.5%–108.5%) compared to the indices of vacuum bag and vacuum vial methods(119%–217%). Meanwhile, the gas chromatograph determination of other gas components(O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.
基金We gratefully acknowledge the support of the National Basic Research Program of China (973 Program) (No. 2012CB720401 ) and the Key Project of National Natural Science Foundation of China (No. 51134008).
文摘lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.
基金supported by National Basic Research Program of China(973 Program)under Grant 2013CB228205National Natural Science Foundation of China under Grant 51541707.
文摘In this paper,a model of a large-scale optimal power flow(OPF)under voltage grading and network partition and its algorithm is presented.Based on the principles of open loop operations,the node injecting current method is used to divide the large-scale power grid into voltage grading and district dividing structures.The power network is further divided into a high-voltage main network and several subnets according to voltage levels of 220 kV.The subnets are connected by means of boundary nodes,and the partition model is solved using the improved approximate Newton direction method,which achieves complete dynamic decoupling simply by exchanging boundary variables between the main network and the subnets.A largescale power grid thus is decomposed into many subnets,making the solution of the problem simpler and faster while helping to protect the information of individual subnets.The system is tested for correctness and effectiveness of the proposed model,and the results obtained are matched in real-time.Finally,the algorithm is seen to have good convergence while improving calculation speed.