Temperature drop is commonly observed in subsea vertical X-mas trees during shutdown.The presence of a huge temperature difference between internal crude oil and external seawater can cause severe equipment degradatio...Temperature drop is commonly observed in subsea vertical X-mas trees during shutdown.The presence of a huge temperature difference between internal crude oil and external seawater can cause severe equipment degradation of the oil flow channel(e.g.,hydrate precipitation),which can block the oil flow channel and interrupt the production process.The most vulnerable parts of a subsea vertical X-mas tree tend to be components with high convective heat transfer rates,such as production modules and short joints.We proposed an innovative approach for the insulation design of underwater equipment under a shutdown condition.First,we obtained a heat transfer analysis of the tree under working conditions through computational fluid dynamics to ascertain the initial temperature condition for an unsteadystate analysis.Second,we investigated the unsteady heat transfer characteristics of the tree with an insulation layer in the shutdown state and derived the relationships between insulation duration and thickness by data analysis.We used data analysis to identify the relationship between insulation duration and thickness.Finally,we derived the empirical formula of insulation thickness for underwater equipment given the effect of environmental factors on the heat preservation effect.We performed the experiment with an oil pipeline,and the results showed that the internal oil of the equipment did not hydrate within 8 h under the shutdown condition with insulation layers.展开更多
Based on the obtained data of half-lives(t1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predic...Based on the obtained data of half-lives(t1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predict the t1/2 values of the remaining 178 PCBs, using the structural parameters as independent variables and lgt1/2 values as the dependent variable. Among this process, the whole data set(31 compounds) was divided into a training set(24 compounds) for model generation and a test set(7 compounds) for model validation. Then, the full factor experimental design was used to research the potential second-order interactional effect between different substituent positions, obtaining the final regulation scheme for PCB. At last, a 3D QSAR pharmacophore model was established to validate the reasonable regulation targeting typical PCB with respect to half-lives and thermostability. As a result, the cross-validation correlation coefficient(q2) obtained by the 3D QSAR model was 0.845(〉0.5) and the coefficient of determination(r2) obtained was 0.936(〉0.9), indicating that the models were robust and predictive. CoMSIA analyses upon steric, electrostatic and hydrophobic fields were 0.7%, 85.9%, and 13.4%, respectively. The electrostatic field was determined to be a primary factor governing the tt/2. From CoMSIA contour maps, tl/2 increased when substi- tuents possessed electropositive groups at the 2'-, 3-, Y-, 5- and 5'- positions and electronegative groups at the 3-, 3'-, 5-, 6- and 6'- positions, which could increase the PCB stability in transformer insulation oil. Modification of two typical PCB congeners(PCB-77 and PCB-81) showed that the lgtl/2 for three selected modified compounds increased by 13%(average ratio) compared with that of each congener and the thermostability of them were higher, validating the reasonability of the regulatory scheme obtained from the 3D QSAR model. These results are expected to be beneficial in predicting tl/2 values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the stability of PCBs.展开更多
基金financed by the Scientific Research Project of Ocean Engineering Equipment,Ministry of Industry and Information Technology of China。
文摘Temperature drop is commonly observed in subsea vertical X-mas trees during shutdown.The presence of a huge temperature difference between internal crude oil and external seawater can cause severe equipment degradation of the oil flow channel(e.g.,hydrate precipitation),which can block the oil flow channel and interrupt the production process.The most vulnerable parts of a subsea vertical X-mas tree tend to be components with high convective heat transfer rates,such as production modules and short joints.We proposed an innovative approach for the insulation design of underwater equipment under a shutdown condition.First,we obtained a heat transfer analysis of the tree under working conditions through computational fluid dynamics to ascertain the initial temperature condition for an unsteadystate analysis.Second,we investigated the unsteady heat transfer characteristics of the tree with an insulation layer in the shutdown state and derived the relationships between insulation duration and thickness by data analysis.We used data analysis to identify the relationship between insulation duration and thickness.Finally,we derived the empirical formula of insulation thickness for underwater equipment given the effect of environmental factors on the heat preservation effect.We performed the experiment with an oil pipeline,and the results showed that the internal oil of the equipment did not hydrate within 8 h under the shutdown condition with insulation layers.
文摘Based on the obtained data of half-lives(t1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predict the t1/2 values of the remaining 178 PCBs, using the structural parameters as independent variables and lgt1/2 values as the dependent variable. Among this process, the whole data set(31 compounds) was divided into a training set(24 compounds) for model generation and a test set(7 compounds) for model validation. Then, the full factor experimental design was used to research the potential second-order interactional effect between different substituent positions, obtaining the final regulation scheme for PCB. At last, a 3D QSAR pharmacophore model was established to validate the reasonable regulation targeting typical PCB with respect to half-lives and thermostability. As a result, the cross-validation correlation coefficient(q2) obtained by the 3D QSAR model was 0.845(〉0.5) and the coefficient of determination(r2) obtained was 0.936(〉0.9), indicating that the models were robust and predictive. CoMSIA analyses upon steric, electrostatic and hydrophobic fields were 0.7%, 85.9%, and 13.4%, respectively. The electrostatic field was determined to be a primary factor governing the tt/2. From CoMSIA contour maps, tl/2 increased when substi- tuents possessed electropositive groups at the 2'-, 3-, Y-, 5- and 5'- positions and electronegative groups at the 3-, 3'-, 5-, 6- and 6'- positions, which could increase the PCB stability in transformer insulation oil. Modification of two typical PCB congeners(PCB-77 and PCB-81) showed that the lgtl/2 for three selected modified compounds increased by 13%(average ratio) compared with that of each congener and the thermostability of them were higher, validating the reasonability of the regulatory scheme obtained from the 3D QSAR model. These results are expected to be beneficial in predicting tl/2 values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the stability of PCBs.