We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ...We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.展开更多
In this work,the static tensile and free vibration of nanorods are studied via both the strain-driven(Strain D)and stress-driven(Stress D)two-phase nonlocal models with a bi-Helmholtz averaging kernel.Merely adjusting...In this work,the static tensile and free vibration of nanorods are studied via both the strain-driven(Strain D)and stress-driven(Stress D)two-phase nonlocal models with a bi-Helmholtz averaging kernel.Merely adjusting the limits of integration,the integral constitutive equation of the Fredholm type is converted to that of the Volterra type and then solved directly via the Laplace transform technique.The unknown constants can be uniquely determined through the standard boundary conditions and two constrained conditions accompanying the Laplace transform process.In the numerical examples,the bi-Helmholtz kernel-based Strain D(or Stress D)two-phase model shows consistently softening(or stiffening)effects on both the tension and the free vibration of nanorods with different boundary edges.The effects of the two nonlocal parameters of the bi-Helmholtz kernel-based two-phase nonlocal models are studied and compared with those of the Helmholtz kernel-based models.展开更多
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-He...A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.展开更多
In this paper,we propose general strain-and stress-driven two-phase local/nonlocal piezoelectric integral models,which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of n...In this paper,we propose general strain-and stress-driven two-phase local/nonlocal piezoelectric integral models,which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of nanostructures.The nonlocal piezoelectric model is transformed from integral to an equivalent differential form with four constitutive boundary conditions due to the difficulty in solving intergro-differential equations directly.The nonlocal piezoelectric integral models are used to model the static bending of the Euler-Bernoulli piezoelectric beam on the assumption that the nonlocal elastic and piezoelectric parameters are coincident with each other.The governing differential equations as well as constitutive and standard boundary conditions are deduced.It is found that purely strain-and stress-driven nonlocal piezoelectric integral models are ill-posed,because the total number of differential orders for governing equations is less than that of boundary conditions.Meanwhile,the traditional nonlocal piezoelectric differential model would lead to inconsistent bending response for Euler-Bernoulli piezoelectric beam under different boundary and loading conditions.Several nominal variables are introduced to normalize the governing equations and boundary conditions,and the general differential quadrature method(GDQM)is used to obtain the numerical solutions.The results from current models are validated against results in the literature.It is clearly established that a consistent softening and toughening effects can be obtained for static bending of the Euler-Bernoulli beam based on the general strain-and stress-driven local/nonlocal piezoelectric integral models,respectively.展开更多
We prove a local existence of a strong solution v :Ω×T→R^3 for a system of nonlinear integrodifferential equations describing motion of an incompressible viscoelastic fluid using standard mathematical tools. T...We prove a local existence of a strong solution v :Ω×T→R^3 for a system of nonlinear integrodifferential equations describing motion of an incompressible viscoelastic fluid using standard mathematical tools. The problem is considered in a bounded, smooth domain ΩСR^3 with a Dirichlet boundary condition and a standard initial condition.展开更多
Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current...Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.展开更多
Understanding how per-and polyfluoroalkyl substances(PFASs)enter aquatic ecosystems is challenging due to the complex interplay of physical,chemical,and biological processes,as well as the influence of hydraulic and h...Understanding how per-and polyfluoroalkyl substances(PFASs)enter aquatic ecosystems is challenging due to the complex interplay of physical,chemical,and biological processes,as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale.The spatiotemporal dynamics of PFASs across various media remain largely unknown.Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model.This model incorporates hydrological,hydrodynamic,and water quality processes to quantify the distributions of total PFASs,including the major components perfluorooctanoate(PFOA)and perfluorooctane sulfonate(PFOS),across water,particulate matter,and sediments within the reservoir.Our results,validated against four years of field measurements with most relative average deviations below 40%,demonstrate that this integrated approach effectively characterizes the occurrence,sources,sinks,and trends of PFASs.The majority of PFASs are found in the dissolved phase(>95%),followed by fractions sorbed to organic particles like detritus(1.0-3.5%)and phytoplankton(1-2%).We also assess the potential risks in both the water column and sediments of the reservoir.The risk quotients for PFOS and PFOA are<0.32 and<0.00016,respectively,indicating an acceptable risk level for PFASs in this water body.The reservoir also exhibits substantial buffering capacity,even with a tenfold increase in external loading,particularly in managing the risks associated with PFOA compared to PFOS.This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.展开更多
This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate ...This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.展开更多
Objective: To investigate the effect of the integrated nursing model in the prevention of chemotherapy-induced peripheral injury. Methods: A total of 60 tumor patients receiving oxaliplatin for 1 - 6 cycles of chemoth...Objective: To investigate the effect of the integrated nursing model in the prevention of chemotherapy-induced peripheral injury. Methods: A total of 60 tumor patients receiving oxaliplatin for 1 - 6 cycles of chemotherapy from January to September 2023 were selected. 30 patients were selected from January to March and divided into the control group, and 30 patients were selected from July to 9 as the experimental group. The control group received conventional chemotherapy nursing, while the experimental group received integrated nursing. Anxiety, peripheral nerve toxicity stage and quality of life score were compared between the two groups before and after intervention. Results: After intervention, the scores of the self-rating Anxiety Scale (SAS) and the total scores of the oxaliplatin Levi specific sensory neurotoxicity scale in the experimental group were significantly lower than those in the control group, and the differences were statistically significant (P< 0.05);The Quality of Life Scale (FACT-G) score of cancer patients was higher than that of control group, and the difference was statistically significant (P< 0.05). Conclusion: The integrated nursing model can effectively reduce the anxiety of patients, reduce the incidence of peripheral nerve injury and improve the quality of life of patients.展开更多
The core education function of higher vocational colleges is to train technical talents with high quality,so as to meet the needs of talents in the development stage of our society.Under the guidance of talent trainin...The core education function of higher vocational colleges is to train technical talents with high quality,so as to meet the needs of talents in the development stage of our society.Under the guidance of talent training,higher vocational colleges need to pay attention to establishing an all-round and three-dimensional education model,and promote innovation of higher vocational education on the basis of this.It is also a way to promote the innovation of higher vocational education to vigorously promote the construction of“post,course,competition,certificate”mode in the construction of education mode.Through the construction of“post,course,competition,certificate”mode,the education mode of higher vocational colleges is gradually improved,so as to strengthen the effectiveness of talent training in higher vocational colleges.Therefore,in this paper,the author puts forward some suggestions to promote the construction of the integrated education mode of the electronic information engineering technology major in higher vocational colleges,so as to help improve the talent training level of higher vocational colleges.展开更多
Objective: To analyze the impact of an integrated extended care model on improving the quality of life of elderly patients with Type 2 Diabetes Mellitus (T2DM). Methods: A total of 176 patients admitted to the hospita...Objective: To analyze the impact of an integrated extended care model on improving the quality of life of elderly patients with Type 2 Diabetes Mellitus (T2DM). Methods: A total of 176 patients admitted to the hospital from March 2015 to February 2018 were selected and randomly assigned to an observation group and a control group, with 88 patients each. The control group implemented conventional nursing interventions, and the observation group carried out an integrated extended-care model. The level of glycemic control, quality of life, and daily medication adherence between both groups were compared. Results: The observation group showed significant improvement in the level of glycemic control, and their fasting blood glucose, 2-hour postprandial blood glucose, and glycated hemoglobin levels were significantly lower as compared with those in the study group (P < 0.05). The quality of life of the patients in the observation group was higher than that of the control group (P < 0.05). The observation group had a higher compliance score (95.48 ± 7.45) than the control group (81.31 ± 8.72) (t = 8.909, P < 0.05). Conclusion: The integrated extended care model allows patients to receive comprehensive and individualized nursing services after discharge, which improves the effect of drug therapy and the quality of life of patients.展开更多
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ...The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions.展开更多
Previous studies have shown that Eringen’s differential nonlocal model would lead to the ill-posed mathematical formulation for axisymmetric bending of circular microplates.Based on the nonlocal integral models along...Previous studies have shown that Eringen’s differential nonlocal model would lead to the ill-posed mathematical formulation for axisymmetric bending of circular microplates.Based on the nonlocal integral models along the radial and circumferential directions,we propose nonlocal integral polar models in this work.The proposed strainand stress-driven two-phase nonlocal integral polar models are applied to model the axisymmetric bending of circular microplates.The governing differential equations and boundary conditions(BCs)as well as constitutive constraints are deduced.It is found that the purely strain-driven nonlocal integral polar model turns to a traditional nonlocal differential polar model if the constitutive constraints are neglected.Meanwhile,the purely strain-and stress-driven nonlocal integral polar models are ill-posed,because the total number of the differential orders of the governing equations is less than that of the BCs plus constitutive constraints.Several nominal variables are introduced to simplify the mathematical expression,and the general differential quadrature method(GDQM)is applied to obtain the numerical solutions.The results from the current models(CMs)are compared with the data in the literature.It is clearly established that the consistent softening and toughening effects can be obtained for the strain-and stress-driven local/nonlocal integral polar models,respectively.The proposed two-phase local/nonlocal integral polar models(TPNIPMs)may provide an efficient method to design and optimize the plate-like structures for microelectro-mechanical systems.展开更多
This paper addresses an integral model of development a large electric power system using the example of the Unified Energy System of Russia.The model takes account of the age structure of the plants main equipment.Be...This paper addresses an integral model of development a large electric power system using the example of the Unified Energy System of Russia.The model takes account of the age structure of the plants main equipment.Besides,generating equipment is divided into components depending on the types of energy resources used.The mathematical model is presented by a system of nonclassical Volterra integral equations of the first kind.One of the equations describes the balance between the total available capacity of the electric power system,commissioning of new equipment,and dismantling of obsolete one.The other equations define the shares of different types of power plants in the total composition of the electric power system equipment.Based on the considered model,we set a problem that searches the optimal lifetimes of electric power system capacities for a given demand for electricity.The optimality criterion is a functional reflecting cost of commissioning and operating the capacities.The specifics of the optimization problem are that the optimization parameter is in the lower limit of integration.An algorithm for solving of this optimal control problem numerically is developed.The influence of economic indices on the solution to the optimal control problem is studied.Calculations of the optimal development of the Unified Energy System of Russia until 2050 are carried out using real-life data.展开更多
Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is ex...Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is exposed to the harsh space environment,with increasing working time,the performance of its internal electronic components gradually degrade until abnormal damage occurs.This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft.Therefore,timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft.In this paper,we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine(ILS-SVM)model:it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set,then gets n corresponding least squares support vector machine(LS-SVM)submodels by training on these training subsets,respectively;after that,the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on;finally,based on the obtained ILS-SVM model,a parameterfree and unsupervised anomaly determination method is proposed to detect the health status of solar arrays.We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs,which reflects the applicability of the method.展开更多
To evaluate the lateral sealing mechanism of extensional fault based on the pressure difference between fault and reservoir, an integral mathematical-geological model of diagenetic time on diagenetic pressure consider...To evaluate the lateral sealing mechanism of extensional fault based on the pressure difference between fault and reservoir, an integral mathematical-geological model of diagenetic time on diagenetic pressure considering the influence of diagenetic time on the diagenetic pressure and diagenetic degree of fault rock has been established to quantitatively calculate the lateral sealing ability of extensional fault. By calculating the time integral of the vertical stress and horizontal in-situ stress on the fault rock and surrounding rock, the burial depth of the surrounding rock with the same clay content and diagenesis degree as the target fault rock was worked out. In combination with the statistical correlation of clay content, burial depth and displacement pressure of rock in the study area, the displacement pressure of target fault rock was calculated quantitatively. The calculated displacement pressure was compared with that of the target reservoir to quantitatively evaluate lateral sealing state and ability of the extensional fault. The method presented in this work was used to evaluate the sealing of F_(1), F_(2) and F_(3) faults in No.1 structure of Nanpu Sag, and the results were compared with those from fault-reservoir displacement pressure differential methods without considering the diagenetic time and simple considering the diagenetic time. It is found that the results calculated by the integral mathematical-geological model are the closest to the actual underground situation, the errors between the hydrocarbon column height predicted by this method and the actual column height were 0–8 m only, proving that this model is more feasible and credible.展开更多
Lie symmetry analysis is applied to a(3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with a...Lie symmetry analysis is applied to a(3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions for the(3+1)-dimensional Virasoro integrable model,including the interaction solution between a kink and a soliton,the lump-type solution and periodic solutions,have been studied analytically and graphically.展开更多
The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w...The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.展开更多
Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on th...Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on the local environment. This review investigates the effects of flow alterations by hydropower on the downstream river system and the possibilities to integrate these effects into hydraulic modeling. The results show that various effects of flow regulation on the ecosystem, but also social and economic effects on related communities were observed in the last decades. The application of hydraulic models for investigations of ecological effects is common. Especially hydraulic effects and effects on fish were extensively modeled with the help of hydraulic 1D- and 2D-simulations. Current applications to investigate social and economic effects integrated into hydraulic modeling are meanwhile limited. Approaches to realizing this integration are presented. Further research on the economic valuation of ecosystems and integration of social and economic effects to hydraulic models is necessary to develop holistic tools to support decision-making on sustainable hydropower.展开更多
Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer con...Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball's model replaced relative humidity with VPD s (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO 2 concentration between leaf and ambient air are considered, VPD s , the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO 2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO 2, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Natural Sciences and Engineering Research Council of Canada(No.NSERC RGPIN-2023-03227)。
文摘We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.
基金the National Natural Science Foundation of China(No.12172169)the China Scholarship Council(CSC)(No.202006830038)。
文摘In this work,the static tensile and free vibration of nanorods are studied via both the strain-driven(Strain D)and stress-driven(Stress D)two-phase nonlocal models with a bi-Helmholtz averaging kernel.Merely adjusting the limits of integration,the integral constitutive equation of the Fredholm type is converted to that of the Volterra type and then solved directly via the Laplace transform technique.The unknown constants can be uniquely determined through the standard boundary conditions and two constrained conditions accompanying the Laplace transform process.In the numerical examples,the bi-Helmholtz kernel-based Strain D(or Stress D)two-phase model shows consistently softening(or stiffening)effects on both the tension and the free vibration of nanorods with different boundary edges.The effects of the two nonlocal parameters of the bi-Helmholtz kernel-based two-phase nonlocal models are studied and compared with those of the Helmholtz kernel-based models.
基金Project supported by the National Natural Science Foundation of China(No.11672131)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.
基金the National Natural Science Foundation of China(No.12172169)the Scholarship of the China Scholarship Council(No.202106830093)。
文摘In this paper,we propose general strain-and stress-driven two-phase local/nonlocal piezoelectric integral models,which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of nanostructures.The nonlocal piezoelectric model is transformed from integral to an equivalent differential form with four constitutive boundary conditions due to the difficulty in solving intergro-differential equations directly.The nonlocal piezoelectric integral models are used to model the static bending of the Euler-Bernoulli piezoelectric beam on the assumption that the nonlocal elastic and piezoelectric parameters are coincident with each other.The governing differential equations as well as constitutive and standard boundary conditions are deduced.It is found that purely strain-and stress-driven nonlocal piezoelectric integral models are ill-posed,because the total number of differential orders for governing equations is less than that of boundary conditions.Meanwhile,the traditional nonlocal piezoelectric differential model would lead to inconsistent bending response for Euler-Bernoulli piezoelectric beam under different boundary and loading conditions.Several nominal variables are introduced to normalize the governing equations and boundary conditions,and the general differential quadrature method(GDQM)is used to obtain the numerical solutions.The results from current models are validated against results in the literature.It is clearly established that a consistent softening and toughening effects can be obtained for static bending of the Euler-Bernoulli beam based on the general strain-and stress-driven local/nonlocal piezoelectric integral models,respectively.
基金supported by Grant Agency of the Charles University(454213)
文摘We prove a local existence of a strong solution v :Ω×T→R^3 for a system of nonlinear integrodifferential equations describing motion of an incompressible viscoelastic fluid using standard mathematical tools. The problem is considered in a bounded, smooth domain ΩСR^3 with a Dirichlet boundary condition and a standard initial condition.
基金The Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120041130002the National Key Project of Science and Technology under contract No.2011ZX 05056-001-02the Fundamental Research Funds for the Central Universities under contract No.DUT14ZD220
文摘Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.
基金National Natural Science Foundation of China(No.42077356 and 42361144719)seventh batch Young Elite Scientists Sponsorship Program by Jilin Province(QT202330).
文摘Understanding how per-and polyfluoroalkyl substances(PFASs)enter aquatic ecosystems is challenging due to the complex interplay of physical,chemical,and biological processes,as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale.The spatiotemporal dynamics of PFASs across various media remain largely unknown.Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model.This model incorporates hydrological,hydrodynamic,and water quality processes to quantify the distributions of total PFASs,including the major components perfluorooctanoate(PFOA)and perfluorooctane sulfonate(PFOS),across water,particulate matter,and sediments within the reservoir.Our results,validated against four years of field measurements with most relative average deviations below 40%,demonstrate that this integrated approach effectively characterizes the occurrence,sources,sinks,and trends of PFASs.The majority of PFASs are found in the dissolved phase(>95%),followed by fractions sorbed to organic particles like detritus(1.0-3.5%)and phytoplankton(1-2%).We also assess the potential risks in both the water column and sediments of the reservoir.The risk quotients for PFOS and PFOA are<0.32 and<0.00016,respectively,indicating an acceptable risk level for PFASs in this water body.The reservoir also exhibits substantial buffering capacity,even with a tenfold increase in external loading,particularly in managing the risks associated with PFOA compared to PFOS.This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.
基金funded by the National Natu-ral Science Foundation of China(Grant No.42075044 and No.41975112)a project supported by the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022006).
文摘This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.
文摘Objective: To investigate the effect of the integrated nursing model in the prevention of chemotherapy-induced peripheral injury. Methods: A total of 60 tumor patients receiving oxaliplatin for 1 - 6 cycles of chemotherapy from January to September 2023 were selected. 30 patients were selected from January to March and divided into the control group, and 30 patients were selected from July to 9 as the experimental group. The control group received conventional chemotherapy nursing, while the experimental group received integrated nursing. Anxiety, peripheral nerve toxicity stage and quality of life score were compared between the two groups before and after intervention. Results: After intervention, the scores of the self-rating Anxiety Scale (SAS) and the total scores of the oxaliplatin Levi specific sensory neurotoxicity scale in the experimental group were significantly lower than those in the control group, and the differences were statistically significant (P< 0.05);The Quality of Life Scale (FACT-G) score of cancer patients was higher than that of control group, and the difference was statistically significant (P< 0.05). Conclusion: The integrated nursing model can effectively reduce the anxiety of patients, reduce the incidence of peripheral nerve injury and improve the quality of life of patients.
文摘The core education function of higher vocational colleges is to train technical talents with high quality,so as to meet the needs of talents in the development stage of our society.Under the guidance of talent training,higher vocational colleges need to pay attention to establishing an all-round and three-dimensional education model,and promote innovation of higher vocational education on the basis of this.It is also a way to promote the innovation of higher vocational education to vigorously promote the construction of“post,course,competition,certificate”mode in the construction of education mode.Through the construction of“post,course,competition,certificate”mode,the education mode of higher vocational colleges is gradually improved,so as to strengthen the effectiveness of talent training in higher vocational colleges.Therefore,in this paper,the author puts forward some suggestions to promote the construction of the integrated education mode of the electronic information engineering technology major in higher vocational colleges,so as to help improve the talent training level of higher vocational colleges.
文摘Objective: To analyze the impact of an integrated extended care model on improving the quality of life of elderly patients with Type 2 Diabetes Mellitus (T2DM). Methods: A total of 176 patients admitted to the hospital from March 2015 to February 2018 were selected and randomly assigned to an observation group and a control group, with 88 patients each. The control group implemented conventional nursing interventions, and the observation group carried out an integrated extended-care model. The level of glycemic control, quality of life, and daily medication adherence between both groups were compared. Results: The observation group showed significant improvement in the level of glycemic control, and their fasting blood glucose, 2-hour postprandial blood glucose, and glycated hemoglobin levels were significantly lower as compared with those in the study group (P < 0.05). The quality of life of the patients in the observation group was higher than that of the control group (P < 0.05). The observation group had a higher compliance score (95.48 ± 7.45) than the control group (81.31 ± 8.72) (t = 8.909, P < 0.05). Conclusion: The integrated extended care model allows patients to receive comprehensive and individualized nursing services after discharge, which improves the effect of drug therapy and the quality of life of patients.
文摘The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions.
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Research Fund of State Key Laboratory of Mechanicsthe Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘Previous studies have shown that Eringen’s differential nonlocal model would lead to the ill-posed mathematical formulation for axisymmetric bending of circular microplates.Based on the nonlocal integral models along the radial and circumferential directions,we propose nonlocal integral polar models in this work.The proposed strainand stress-driven two-phase nonlocal integral polar models are applied to model the axisymmetric bending of circular microplates.The governing differential equations and boundary conditions(BCs)as well as constitutive constraints are deduced.It is found that the purely strain-driven nonlocal integral polar model turns to a traditional nonlocal differential polar model if the constitutive constraints are neglected.Meanwhile,the purely strain-and stress-driven nonlocal integral polar models are ill-posed,because the total number of the differential orders of the governing equations is less than that of the BCs plus constitutive constraints.Several nominal variables are introduced to simplify the mathematical expression,and the general differential quadrature method(GDQM)is applied to obtain the numerical solutions.The results from the current models(CMs)are compared with the data in the literature.It is clearly established that the consistent softening and toughening effects can be obtained for the strain-and stress-driven local/nonlocal integral polar models,respectively.The proposed two-phase local/nonlocal integral polar models(TPNIPMs)may provide an efficient method to design and optimize the plate-like structures for microelectro-mechanical systems.
基金The research was carried out under State Assignment,Project 17.3.1(Reg.No.AAAA-A17-117030310442-8)Project 17.4.2(Reg.No.AAAA-A17-117030310438-1)of the Fundamental Research of Siberian Branch of the Russian Academy of Sciences.
文摘This paper addresses an integral model of development a large electric power system using the example of the Unified Energy System of Russia.The model takes account of the age structure of the plants main equipment.Besides,generating equipment is divided into components depending on the types of energy resources used.The mathematical model is presented by a system of nonclassical Volterra integral equations of the first kind.One of the equations describes the balance between the total available capacity of the electric power system,commissioning of new equipment,and dismantling of obsolete one.The other equations define the shares of different types of power plants in the total composition of the electric power system equipment.Based on the considered model,we set a problem that searches the optimal lifetimes of electric power system capacities for a given demand for electricity.The optimality criterion is a functional reflecting cost of commissioning and operating the capacities.The specifics of the optimization problem are that the optimization parameter is in the lower limit of integration.An algorithm for solving of this optimal control problem numerically is developed.The influence of economic indices on the solution to the optimal control problem is studied.Calculations of the optimal development of the Unified Energy System of Russia until 2050 are carried out using real-life data.
基金supported by the National Natural Science Foundation of China(7190121061973310).
文摘Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is exposed to the harsh space environment,with increasing working time,the performance of its internal electronic components gradually degrade until abnormal damage occurs.This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft.Therefore,timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft.In this paper,we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine(ILS-SVM)model:it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set,then gets n corresponding least squares support vector machine(LS-SVM)submodels by training on these training subsets,respectively;after that,the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on;finally,based on the obtained ILS-SVM model,a parameterfree and unsupervised anomaly determination method is proposed to detect the health status of solar arrays.We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs,which reflects the applicability of the method.
基金Supported by the China National Science and Technology Major Project(41872153)Northeast Petroleum University Research Startup Fund(1305021839)。
文摘To evaluate the lateral sealing mechanism of extensional fault based on the pressure difference between fault and reservoir, an integral mathematical-geological model of diagenetic time on diagenetic pressure considering the influence of diagenetic time on the diagenetic pressure and diagenetic degree of fault rock has been established to quantitatively calculate the lateral sealing ability of extensional fault. By calculating the time integral of the vertical stress and horizontal in-situ stress on the fault rock and surrounding rock, the burial depth of the surrounding rock with the same clay content and diagenesis degree as the target fault rock was worked out. In combination with the statistical correlation of clay content, burial depth and displacement pressure of rock in the study area, the displacement pressure of target fault rock was calculated quantitatively. The calculated displacement pressure was compared with that of the target reservoir to quantitatively evaluate lateral sealing state and ability of the extensional fault. The method presented in this work was used to evaluate the sealing of F_(1), F_(2) and F_(3) faults in No.1 structure of Nanpu Sag, and the results were compared with those from fault-reservoir displacement pressure differential methods without considering the diagenetic time and simple considering the diagenetic time. It is found that the results calculated by the integral mathematical-geological model are the closest to the actual underground situation, the errors between the hydrocarbon column height predicted by this method and the actual column height were 0–8 m only, proving that this model is more feasible and credible.
文摘Lie symmetry analysis is applied to a(3+1)-dimensional Virasoro integrable model and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions for the(3+1)-dimensional Virasoro integrable model,including the interaction solution between a kink and a soliton,the lump-type solution and periodic solutions,have been studied analytically and graphically.
基金funded by the National Natural Science Foundation of China(42071245)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Special Project&Science and Technology Innovation Base Construction Project(PT2107)+2 种基金the Third Xinjiang Comprehensive Scientific Survey Project Sub-topic(2021xjkk140305)the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region(2022TSYCLJ0011)the K.C.Wong Education Foundation(GJTD-2020-14).
文摘The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.
文摘Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on the local environment. This review investigates the effects of flow alterations by hydropower on the downstream river system and the possibilities to integrate these effects into hydraulic modeling. The results show that various effects of flow regulation on the ecosystem, but also social and economic effects on related communities were observed in the last decades. The application of hydraulic models for investigations of ecological effects is common. Especially hydraulic effects and effects on fish were extensively modeled with the help of hydraulic 1D- and 2D-simulations. Current applications to investigate social and economic effects integrated into hydraulic modeling are meanwhile limited. Approaches to realizing this integration are presented. Further research on the economic valuation of ecosystems and integration of social and economic effects to hydraulic models is necessary to develop holistic tools to support decision-making on sustainable hydropower.
文摘Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball's model replaced relative humidity with VPD s (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO 2 concentration between leaf and ambient air are considered, VPD s , the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO 2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO 2, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.