This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,a...This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,and food for the prey or vegetation.The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process.We study the problem of minimization of a given integral cost functional over solutions of the above system.The set-valued mapping defining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable.Some relaxationtype results for the minimization problem are obtained and the existence of a nearly optimal solution is established.展开更多
基金supported by National Natural Science Foundation of China(12071165 and 62076104)Natural Science Foundation of Fujian Province(2020J01072)+2 种基金Program for Innovative Research Team in Science and Technology in Fujian Province University,Quanzhou High-Level Talents Support Plan(2017ZT012)Scientific Research Funds of Huaqiao University(605-50Y 19017,605-50Y14040)supported by Ministry of Science and Higher Education of Russian Federation(075-15-2020-787,large scientific project"Fundamentals,methods and technologies for digital monitoring and forecasting of the environmental situation on the Baikal natural territory")。
文摘This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,and food for the prey or vegetation.The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process.We study the problem of minimization of a given integral cost functional over solutions of the above system.The set-valued mapping defining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable.Some relaxationtype results for the minimization problem are obtained and the existence of a nearly optimal solution is established.