The piezothermoelectric actuator/sensor collocation for advanced intelligent structure is studied. The quasi-static equations of piezothermoelasticity are used to analyze the coupling effects between the displaceme...The piezothermoelectric actuator/sensor collocation for advanced intelligent structure is studied. The quasi-static equations of piezothermoelasticity are used to analyze the coupling effects between the displacement, temperature and electric fields of piezothermoelasticity continua and the governing equations for piezothermoelasticity continua are derived to discuss the effects of coupling factors on the control/sensing performance in intelligent structure. Based on those analyses, a finite element analysis model of distributed piezothertnoelectric continua is developed later. The thermal stress and deformation of a beam are calculated by FEA method so as to determine the optimal actuator/sensor placement. Based on the results of the optimal analysis procedure of actuator/sensor placement, some conclusions of actuator/sensor placement are obtained. Thus, the optimal actuator/sensor placement for piezothermoelectric intelligent structure can be found from the actuator/sensor placements available so that intelligent system will have the best controllability and observability.展开更多
Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil stru...Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil structures, medical devices, information storage, energy harvesting and so on. It is of academic challenge to fully understand the complex multi-field coupling behaviors of various smart materials and structures, and of engineering sig- nificance to enhance the performance and reliability of these materials and structures in industrial applications. The papers in the special topic of Mechanics of Intelligent Materials and Structures focus on the understanding of the electromechanical, magneto-elastic, and magneto-rheological coupling behav- iors and properties of smart materials and structures for applications in vibration control, resonators, and various functional devices.展开更多
A kind of photoelectric system that is suitable to measuring and to testing the damage of the composite material intelligent structure was presented. It can measure the degree of damage of the composite intelligent st...A kind of photoelectric system that is suitable to measuring and to testing the damage of the composite material intelligent structure was presented. It can measure the degree of damage of the composite intelligent structure and it also can tell us the damage position in the structure. This system consists of two parts : software and hardware. Experiments of the damage detection and the analysis of the composite material structure with the photoelectric system were performed, and a series of damage detection experiments was conducted. The results prove that the performance of the system is well and the effects of the measure and test are evident. Through all the experiments, the damage detection technology and test system are approved to be real-time, effective and reliable in the damage detection of the composite intelligent structure.展开更多
The smart properties of homogeneous electrorheological fluid (HERF) containing side-chain type liquid crystalline polymer were studied and an actual HERF damper with an adjustable viscosity was produced.A mechanical m...The smart properties of homogeneous electrorheological fluid (HERF) containing side-chain type liquid crystalline polymer were studied and an actual HERF damper with an adjustable viscosity was produced.A mechanical model of the HERF smart damper was established on the basis of experiment and theoretical analysis.Then a controlled equation of SDOF structure by HERF damper was derived and a semi active control strategy based on optimal sliding displacement of damper was presented.The simulation results for a single story frame structure indicate that HERF,which may avoid some defects of common particles suspended ER fluids,is an excellent smart material with better stability.Using the semi active control strategy presented,HERF smart damper controlled could effectively reduce seismic responses of structures and keeps the control stable at all times.展开更多
A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body forc...A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body force, inner and outer surface traction and potential. Each layer of the shell can be piezoelectric or elastic/dielectric, with perfect bonding assumed between each interface. The governing equations are solved by the state-space technique. Numerical results are presented to show the sensing and actuating effects of three-layered piezoelectric cylindrical shell.展开更多
Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amo...Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.展开更多
"Huge intelligent structure" was built by the Mughal Heroes in this Subcontinent. It was the process to prevent and to secure a city as well as the territory from any kind of disruption and disintegration through th..."Huge intelligent structure" was built by the Mughal Heroes in this Subcontinent. It was the process to prevent and to secure a city as well as the territory from any kind of disruption and disintegration through the fortified walled profile. The strategies, approach, and positioning of those forts were governed by the contextual specification. All different forts of Mughals Empire had unusual notion of accomplishment. Fort architecture in the subcontinent was initially developed by the Mughals to protect the territory from the enemy. Later, those forts became huge and complex. The planning approach and the morphology of the fort architecture were justified according to the relative factor. The Mughal Fort is a Medieval-era building. The Mughal Fort improves the city's defensive strength and provides some culture at every turn, Building Walls is a prerequisite to settle the Mughal Fort. The Mughals were concern about environment. Mughals ruled most of the subcontinent until the mid-19th. During their rule they constructed elaborate forts across the countryside which served as administrative centers and living quarters for the occupiers. Bengal became a province of the Mughal Empire and was ruled from Delhi by the governors of Bengal (1576).a Bengali river fort experienced lots of local and traditional influences only lbr being the river fort, stating from the component, elements of tbrts, and formal profile as well. Undoubtedly, Bengal conceived a different kind of river oriented fort, which has distinct characters. Even in the case of this fort formation, the Mughal had some strategic planning and morphology for spread city beyond the fort wall. The objective of the research is solely to identify distinguished characteristics and context specification and to analyze the morphology of the four-river fort architecture of East Bengal (Bangladesh).展开更多
基金The project is supported by National Natural Science Foundation of China (59805018)
文摘The piezothermoelectric actuator/sensor collocation for advanced intelligent structure is studied. The quasi-static equations of piezothermoelasticity are used to analyze the coupling effects between the displacement, temperature and electric fields of piezothermoelasticity continua and the governing equations for piezothermoelasticity continua are derived to discuss the effects of coupling factors on the control/sensing performance in intelligent structure. Based on those analyses, a finite element analysis model of distributed piezothertnoelectric continua is developed later. The thermal stress and deformation of a beam are calculated by FEA method so as to determine the optimal actuator/sensor placement. Based on the results of the optimal analysis procedure of actuator/sensor placement, some conclusions of actuator/sensor placement are obtained. Thus, the optimal actuator/sensor placement for piezothermoelectric intelligent structure can be found from the actuator/sensor placements available so that intelligent system will have the best controllability and observability.
文摘Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil structures, medical devices, information storage, energy harvesting and so on. It is of academic challenge to fully understand the complex multi-field coupling behaviors of various smart materials and structures, and of engineering sig- nificance to enhance the performance and reliability of these materials and structures in industrial applications. The papers in the special topic of Mechanics of Intelligent Materials and Structures focus on the understanding of the electromechanical, magneto-elastic, and magneto-rheological coupling behav- iors and properties of smart materials and structures for applications in vibration control, resonators, and various functional devices.
文摘A kind of photoelectric system that is suitable to measuring and to testing the damage of the composite material intelligent structure was presented. It can measure the degree of damage of the composite intelligent structure and it also can tell us the damage position in the structure. This system consists of two parts : software and hardware. Experiments of the damage detection and the analysis of the composite material structure with the photoelectric system were performed, and a series of damage detection experiments was conducted. The results prove that the performance of the system is well and the effects of the measure and test are evident. Through all the experiments, the damage detection technology and test system are approved to be real-time, effective and reliable in the damage detection of the composite intelligent structure.
文摘The smart properties of homogeneous electrorheological fluid (HERF) containing side-chain type liquid crystalline polymer were studied and an actual HERF damper with an adjustable viscosity was produced.A mechanical model of the HERF smart damper was established on the basis of experiment and theoretical analysis.Then a controlled equation of SDOF structure by HERF damper was derived and a semi active control strategy based on optimal sliding displacement of damper was presented.The simulation results for a single story frame structure indicate that HERF,which may avoid some defects of common particles suspended ER fluids,is an excellent smart material with better stability.Using the semi active control strategy presented,HERF smart damper controlled could effectively reduce seismic responses of structures and keeps the control stable at all times.
基金The project supported by the National Natural Science Foundation of China (19572027)
文摘A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body force, inner and outer surface traction and potential. Each layer of the shell can be piezoelectric or elastic/dielectric, with perfect bonding assumed between each interface. The governing equations are solved by the state-space technique. Numerical results are presented to show the sensing and actuating effects of three-layered piezoelectric cylindrical shell.
基金supported by the National Natural Science Foundation of China(61471391)the China Postdoctoral Science Foundation(2013M542541)
文摘Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.
文摘"Huge intelligent structure" was built by the Mughal Heroes in this Subcontinent. It was the process to prevent and to secure a city as well as the territory from any kind of disruption and disintegration through the fortified walled profile. The strategies, approach, and positioning of those forts were governed by the contextual specification. All different forts of Mughals Empire had unusual notion of accomplishment. Fort architecture in the subcontinent was initially developed by the Mughals to protect the territory from the enemy. Later, those forts became huge and complex. The planning approach and the morphology of the fort architecture were justified according to the relative factor. The Mughal Fort is a Medieval-era building. The Mughal Fort improves the city's defensive strength and provides some culture at every turn, Building Walls is a prerequisite to settle the Mughal Fort. The Mughals were concern about environment. Mughals ruled most of the subcontinent until the mid-19th. During their rule they constructed elaborate forts across the countryside which served as administrative centers and living quarters for the occupiers. Bengal became a province of the Mughal Empire and was ruled from Delhi by the governors of Bengal (1576).a Bengali river fort experienced lots of local and traditional influences only lbr being the river fort, stating from the component, elements of tbrts, and formal profile as well. Undoubtedly, Bengal conceived a different kind of river oriented fort, which has distinct characters. Even in the case of this fort formation, the Mughal had some strategic planning and morphology for spread city beyond the fort wall. The objective of the research is solely to identify distinguished characteristics and context specification and to analyze the morphology of the four-river fort architecture of East Bengal (Bangladesh).