The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all...The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement.展开更多
The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal st...The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal stability of ZnO nanorods was also detected by thermal gravity analyzing. Thermal annealing treatment results indicate that ZnO nanorods are fundamentally stable when annealing temperature is lower than 600 ℃. When annealing temperature is beyond 600℃, the diameters of ZnO nanorods obviously decrease and the aggravating tendency of nanorods between each other also increase. Annealing treatment can greatly influence the gas sensing properties of ZnO nanorods. Comparing with ZnO nanorods without annealing treatment, the gas sensing property of ZnO nanorods to H2 with concentration of 2.5×10-6 can increase from 2.22 to 3.56. ZnO nanorods annealed at 400 ℃ exhibit optimum gas sesing property to H2 gas.展开更多
We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resol...We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),and electron backscatter diffraction(EBSD).The findings reveal that annealing processing has a significant impact on diminishing residual stresses.As the annealing temperature rose from 950 to 1150℃,the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa.Moreover,the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration.Meanwhile,the annealing treatment promotes the decomposition of the Laves,accompanied by the precipitation ofμ-(Mo_(6)Co_(7))starting at 950℃ and reaching a maximum value at 1050℃.The tensile strength and plasticity of the annealing alloy at 1150℃ reached the maximum(1394 MPa,56.1%)which was 131%,200%fold than those of the as-cast alloy(1060 MPa,26.6%),but the oxidation process in the alloy was accelerated at 1150℃.The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase,along with the shape and dispersal of theγ′phase.展开更多
In the present study,the Mg-4Zn-0.6Y-0.5Nd alloy was hot extruded and annealed at 200℃,225℃ and 250℃ for different time to optimize microstructure and mechanical properties.The results exhibit that the dual-size gr...In the present study,the Mg-4Zn-0.6Y-0.5Nd alloy was hot extruded and annealed at 200℃,225℃ and 250℃ for different time to optimize microstructure and mechanical properties.The results exhibit that the dual-size grain structure and linearly distributed secondary phase are the main feature of the as-extruded Mg-Zn-Y-Nd alloy,which can be described as the elongated grain is surrounded by the fine equiaxed grain.Moreover,the as-extruded alloy shows strong{011^(-)0}fiber texture feature,especially for the large elongated grains.The annealing treatment results in static recrystallization,which increases fine equiaxed grains but decreases large elongated grains.In addition,the equiaxed grains formed during the annealing treatment demonstrate relative random orientations,which weaken the{011^(-)0}fiber texture of the alloy.Moreover,during the annealing at 225℃and 250℃,the extension twins begin to form in the alloy and weaken the{011^(-)0}fiber texture of the alloy further.The annealing treatment has little influence on the linearly distributed secondary phase but promotes the coarsening of small precipitates at 250℃.The annealing treatment could increase the yield and ultimate strength,but the elongation decreases,especially at higher temperature.Such a variation can be ascribed to the evolution of texture,grain structure,twinning and precipitation during the annealing treatment.展开更多
The mechanical properties of an austenite-based Fe-Mn-Al-C lightweight steel were improved by co-precipitation of nanoscale Cu-rich and κ-carbide particles.The Fe-28Mn-9Al-0.8C-(0,3)Cu (wt.%) strips were near-rapidly...The mechanical properties of an austenite-based Fe-Mn-Al-C lightweight steel were improved by co-precipitation of nanoscale Cu-rich and κ-carbide particles.The Fe-28Mn-9Al-0.8C-(0,3)Cu (wt.%) strips were near-rapidly solidified and annealed in the temperature range from 500 ℃ to 700 ℃.The microstructure evolution and mechanical properties of the steel under different annealing processes were studied.Microstructural analysis reveals that nanoscale κ-carbides and Cu-rich particles precipitate in the austenite and ferrite of the steel in this annealing temperature range.Co-precipitation of nanoscale Cu-rich particles and κ-carbides provides an obvious increment in the yield strength.At the annealing temperature of 600 ℃,both the yield strength and ultimate tensile strength of Fe-28Mn-9Al-0.8C-3Cu (wt.%) steel strip are the highest.The total elongation is 25%,which is obviously higher than that of Cu-free steel strips,for the addition of Cu reduces the large sized κ-carbides precipitated along austenite/ferrite interfaces.When the annealing temperature rises to 700 ℃,the strength and ductility of the two steel strips deteriorate due to the formation of massive intergranular κ-carbides precipitated along austenite/ferrite interfaces.It can be concluded that a proper co-precipitation of Cu-rich particles and κ-carbides would improve the properties of austenite-based Fe-Mn-Al-C steel.展开更多
Al-Zn-Mg-Sc-Zr alloy samples were annealed to four different states (under-aging, peak-aging, over-aging and double-aging) and then thoroughly investigated by means of electron backscatter diffraction (EBSD), tran...Al-Zn-Mg-Sc-Zr alloy samples were annealed to four different states (under-aging, peak-aging, over-aging and double-aging) and then thoroughly investigated by means of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile and fatigue crack growth rate tests to explore the influence of annealing treatment on microstmcture and fatigue crack growth behavior. The results indicate that Al3(Sc,Zr) particles can effectively refine grains and enhance tensile properties and fatigue properties. After annealing treatment, the under-aged sample and double-aged sample obtained average grain sizes of 4.9473 and 4.1257 μm, and the maximum value of yield/tensile strength (561 MPa/581 MPa) was obtained in peak-aged state. In the Paris region, fatigue crack growth rate, crack deflection and bifurcation, crack blunting and inter/trans-granular propagation were discussed based on data fitting and Laird model and Griffith theory. And the results show that the under-aged sample possesses the best resistance to fatigue crack propagation and the most tortuous and bifurcated crack path. For all samples, the fatigue crack growth rate in the rupture region was inversely proportional to yield strength.展开更多
In order to improve microstructure distribution and mechanical properties of Mg alloy joint by annealing treatment, die-casting AZ31 Mg alloy was successfully welded at rotation speed of 1 400 rpm and travel speed of ...In order to improve microstructure distribution and mechanical properties of Mg alloy joint by annealing treatment, die-casting AZ31 Mg alloy was successfully welded at rotation speed of 1 400 rpm and travel speed of 200 mm/min. The welded joints were annealed at 150-300 ℃ for 15-120 min and then were subjected to transverse tensile. The microstructure of annealed joints was analyzed by optical microscopy and electron backscatter diffraction. The experimental results indicate that(0001) texture intensity in stir zone significantly reduces and sharp transition of grain size is relieved in the interface between stir zone and thermo-mechanically affected zone after annealed at 200 ℃ for 30 min. Meanwhile, the elongation is increased from 7.5% to 13.0% and strength is increased slightly. It is because that annealing treatment can inhibit twin transformation and retain its ability to coordinate deformation during tensile deformation, which contributes to the improvement of plasticity. In addition, annealing treatment can increase the width of interfacial transition zone and lead to gradual transition of grain size between the SZ and TMAZ, which balances dislocation diffusion rate in different zone.展开更多
Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show tha...Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).展开更多
The effect of annealing treatment on the microstructures and mechanical properties of cold-sprayed Ni coating was investigated by conducting micro-hardness and tensile tests and using a normal optical microscope (OM...The effect of annealing treatment on the microstructures and mechanical properties of cold-sprayed Ni coating was investigated by conducting micro-hardness and tensile tests and using a normal optical microscope (OM) ,a scanning electron microscope ( SEM), a transmission electron microscope (TEM) and an electron probe X-ray microanalyzer (EPMA). The results show that following the increase of the annealing temperature ,the micro-hardness of cold-sprayed Ni coating decreases and the elongation after fracture increases, while the tensile strength increases before decreasing. The tensile deformation and fracture behavior change from a typical brittle fracture to a hybrid brittle and ductile fracture, then to a typical ductile failure. It is found that when annealed at an elevated temperature ( e. g. 900℃ ) ,the grains tend to grow abnormally with the oxides spheroidizing and the defects agglomerating at the interfaces, causing the tensile strength reduction of the cold-sprayed nickel coating. It is also pointed out that the tensile strength of the cold-sprayed Ni coating can be significantly improved by the appropriate annealing procedures, but the elongation after fracture cannot be clearly increased because it is difficult to eliminate the main defects in the coating by the following heat treatments.展开更多
Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced ...Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12%ADSC (0.24% Al2O3, mass fraction) and 0.25%ADSC (0.50% Al2O3) subjected to different annealing treatments were conducted. The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix; the particles range in size from 20 to 50 nm with an interparticle spacing of 30100 nm. The produced 0.12%ADSC can maintain more than 87% hardness retention after 900 ℃, 1 h annealing treatment; the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h, followed by cold deformation of 84%; local grain growth can be observed after 1 050 ℃, 1 h annealing treatment. The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.展开更多
In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs t...In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs to be better understood. Nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution during 20 minutes and then annealed in air atmosphere. In-situ X-ray diffraction analysis, coupled with thermogravimetry, gives us an inside on the oxidation behaviour of titanium dioxide nanotube layers compared to bulk reference samples. Structural studies were performed at 700°C for 12 h in order to follow the time consequences on the oxidation of the material, in sufficient stability conditions. In-situ XRD brought to light that the amorphous oxide layer induced by anodization is responsible for the simultaneous growths of anatase and rutile phase during the first 30 minutes of annealing while the bulk sample oxidation leads to the nucleation of a small amount of anatase TiO<sub>2</sub>. The initial amorphous oxide layer created by anodization is also responsible for the delay in crystallization compared to the bulk sample. Thermogravimetric analysis exhibits parabolic shape of the mass gain for both anodized and bulk sample;this kinetics is caused by the formation of a rutile external protective layer, as depicted by the associated in-situ XRD diffractograms. We recorded that titanium dioxide nanotube layers exhibit a lower mean mass gain than the bulk, because of the presence of an initial amorphous oxide layer on anodized samples. In-situ XRD results also provide accurate information concerning the sub-layers behavior during the annealing treatment for the bulk and nanostructured layer. Anatase crystallites are mainly localized at the interface oxide layer-metal and the rutile is at the external interface. Sample surface topography was characterized using scanning electron microscopy (SEM). As a probe of the photoactivity of the annealed TiO<sub>2</sub> nanotube layers, degradation of an acid orange 7 (AO7) dye solution and 4-chlorophenol under UV irradiation (at 365 nm) were performed. Such titanium dioxide nanotube layers show an efficient photocatalytic activity and the analytical results confirm the degradation mechanism of the 4-chlorophenol reported elsewhere.展开更多
Taking extruded Al–Zn–Mg–Cu alloy(7A04 alloy) bars as the research object, the effect and mechanism of pre-annealing treatments on the microstructure and mechanical properties of the aged alloy bars were investigat...Taking extruded Al–Zn–Mg–Cu alloy(7A04 alloy) bars as the research object, the effect and mechanism of pre-annealing treatments on the microstructure and mechanical properties of the aged alloy bars were investigated. The results show that a pre-annealing treatment at 350°C for 15 h before a T6 treatment substantially reduced the sensitivity of the microstructure and mechanical properties of the extruded 7A04 aluminum alloy specimens toward the extrusion temperature. The average grain sizes of the specimens extruded at 390 and 430°C after T6 treatment were 3.4 and 8.1 μm, respectively, and their elongations to failure were 7.0% and 9.2%, respectively. However, after pre-annealing + T6 treatment, the differences in both the grain sizes and the elongations of the specimens became small, i.e., their average grain sizes were 3.2 and 3.8 μm and their elongations were 12.0% and 13.3%, respectively. For the specimens extruded at the same temperature, pre-annealing treatment obviously improved the plasticity of the alloy, which is attributed to an increase in soft texture or to grain refinement in the specimens as a result of the pre-annealing + T6 treatment.展开更多
LiNi0.5Mn1.5O4 was prepared under different cooling conditions. The electrochemical properties of LiNi0.5Mn1.5O4 prepared under different cooling conditions were investigated. The results show that LiNi0.5Mn1.5O4 synt...LiNi0.5Mn1.5O4 was prepared under different cooling conditions. The electrochemical properties of LiNi0.5Mn1.5O4 prepared under different cooling conditions were investigated. The results show that LiNi0.5Mn1.5O4 synthesized with or without annealing treatment has similar X-ray diffraction patterns that can be indexed to cubic spinel structure. The mass loss occurring above 650 ℃ during the heating process can be mostly gained during the cooling process. LiNi0.5Mn1.5O4 synthesized with an annealing treatment exhibits almost one voltage plateau at around 4.7 V and higher capacity with a quick fading upon cycling, whereas LiNi0.5Mn1.5O4 synthesized without annealing treatment shows two voltage plateaus at around 4.1 and 4.7 V and superior capacity retention upon cycling both at rates of 1/7C and 1C, though the capacity is not high.展开更多
The effects of Cu addition and annealing treatment on the magnetic properties and microstructure of Ndl2.3Fe81.7-xCuxB6 (x=0-1.2) ribbons melt-spun and annealed were systematically investigated by the methods of vib...The effects of Cu addition and annealing treatment on the magnetic properties and microstructure of Ndl2.3Fe81.7-xCuxB6 (x=0-1.2) ribbons melt-spun and annealed were systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Optimum magnetic properties were achieved by annealing melt-spun Nd12.3Fe81.5Cu0.2B6 ribbons at 550℃ for 15 min, which only contained Nd2Fe14B phase. The remanence, coercive force, and maximum energy product increase by 18.4%, 36.2%, and 49% respectively compared with those of Cu-free samples. The sig- nificant improvement in magnetic properties originates from the freer grains of the samples by introducing Cu, which leads to the stronger exchange-coupling between neighboring grains.展开更多
The ZnO-Al films were prepared by R.F. magnetron sputtering system using a Zn-Al target (with purity of (99.99%).) The obtained films were characterized by X-ray diffraction, SEM and optical and electrical measurement...The ZnO-Al films were prepared by R.F. magnetron sputtering system using a Zn-Al target (with purity of (99.99%).) The obtained films were characterized by X-ray diffraction, SEM and optical and electrical measurements. The experimental results show that the properties of ZnO films can be further improved by annealing treatment. The crystallinity of ZnO films becomes better, and the optical gap energy is decreased, but thermoelectric power is enhanced after heat treatment. The optical gap energy decreases from 3.75 eV to 3.68 eV when the annealing temperature increases from 25 ℃ to 400 ℃.This can be ascribed to the decrease of carrier concentration, resulting in Burstein shift.展开更多
The best linear fit of Hc(T)/Ms(T) vs 2k1(T)/0Ms2(T) infers that Hc is determined by a nucleation process in nanocrystalline twophase magnet. The condition of the grain shapes is improved after adding Hf and Ga, but t...The best linear fit of Hc(T)/Ms(T) vs 2k1(T)/0Ms2(T) infers that Hc is determined by a nucleation process in nanocrystalline twophase magnet. The condition of the grain shapes is improved after adding Hf and Ga, but the surfaces are deteriorated by some precipitates on the boundary. Taking into account the values of , Neff, the results of TEM, and Moessbauer spectroscopy, the magnetic field heattreatment not only induces grain refinement but also causes a uniform distribution of the soft and hard phases. It is one recommendable method to improve the condition of the microstructure. Both the remanence and energy product values are increased by 20 %-30 % for all ribbons after annealing with magnetic field. The magnetic interaction in Nd2Fe14B/Fe3B+Fe based nanocrystalline twophase magnets is studied using M plots in this paper. It is found that the exchangecoupled interaction is greatly enhanced in the sample annealed with magnetic heattreatment, specially, Nd4Fe76Co3Hf0.5Ga0.5B16 which achieves the highest energy product (BH)max=126.4 kJ/m3.展开更多
Rapid thermal annealing (RTA) of Si+-implanted SI-GaAs was studied in an annealing system using a halogen lamp heater. Good electrical properties in the activated layers were achieved. The co-implantation of phosphoru...Rapid thermal annealing (RTA) of Si+-implanted SI-GaAs was studied in an annealing system using a halogen lamp heater. Good electrical properties in the activated layers were achieved. The co-implantation of phosphorus (P+) with Si+ into SI-GaAs can improve mobility of the ion implanted layer. Hall mobility of 4600-4700 cm2/V · s and activation efficiencies of 75-85% were obtained. These results are better than those obtained from samples without P+ co-implantation. Deep level transient spectroscopy measurements showed that the number of deep levels and their concentrations decreased. P atoms occupy the As vacancies and enhance the activation efficiency and average Hall mobility. GaAs MESFETs with 0.5 W output power and associated gain of 3.5 dB at 6 GHz were obtained by this method.展开更多
Syndiotactic polypropylene (sPP) as-spun fiber (sPP1) and drawn fiber (sPP2) were prepared by melt-spinning and melt-spinning/hot-drawing, respectively. The structure transition of the two fibers induced by anne...Syndiotactic polypropylene (sPP) as-spun fiber (sPP1) and drawn fiber (sPP2) were prepared by melt-spinning and melt-spinning/hot-drawing, respectively. The structure transition of the two fibers induced by annealing at different temperatures and the corresponding mechanical properties were subsequently investigated by the combination of Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD) and tensile testing. The results indicate that the chain conformation and crystal forms of the two sPP fibers are not obviously changed at low annealing temperature (40℃). With increasing the annealing temperature, the trans-planar conformation and mesophase in sPP1 and sPP2 fibers can be completely transformed to helical conformation and crystal form I under tension. Upon removing the tension, a small amount of mesophase and trans-planar conformation will be regained. The mechanical properties of the annealed fibers are manifestly dependent on their initial structure and the annealing temperature.展开更多
Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheat...Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns.展开更多
In order to explore the effect of high-temperature annealing on the mechanical performances and microstructures of different oxygen SiC fibers, two types of silicon carbide(SiC)-based fibers, specified as XD-SiC fib...In order to explore the effect of high-temperature annealing on the mechanical performances and microstructures of different oxygen SiC fibers, two types of silicon carbide(SiC)-based fibers, specified as XD-SiC fibers(low oxygen) and Nicalon-201 fibers(high oxygen), were annealed in Ar for 1 h at 800 ℃, 1 000 and 1 200 ℃, respectively. Mechanical properties of these fibers were characterized via a monofilament tensile method, with observation of the damaged monofilament by SEM. Also, the effects of annealing on the microstructure and chemical compositions of the fibers were studied. The experimental results indicated that the tensile strength decreased with the increase of annealing temperatures,after annealing-treatment at 1200℃, XD-SiC fibers remained 84% of its original strength, while Nicalon-201 fibers remained only 58% of its original strength. Crystallization and chemical composition of the fibers are the dominating factors for their mechanical performance at high temperatures. The microstructure changes of XD-SiC fibers are mainly composed of the growth of β-SiC, for Nicalon-201 fibers, evaporation of gases is the main change for microstructure.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52271107 and 52205392)the Natural Science Foundation of Shandong Province(No.ZR2021ME241)the Bintech-IMR R&D Program(No.GYY-JSBU-2022-012).
文摘The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement.
基金Project(51201052)supported by the National Natural Science Foundation of ChinaProject(2012RFQXG107)supported by the Innovative Talent Fund of Harbin City+1 种基金Project(E201056)supported by Natural Science Foundation of Heilongjiang Province of ChinaProject(1252G022)supported by the Program for Youth Academic Backbone in Heilongjiang Provincial University,China
文摘The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal stability of ZnO nanorods was also detected by thermal gravity analyzing. Thermal annealing treatment results indicate that ZnO nanorods are fundamentally stable when annealing temperature is lower than 600 ℃. When annealing temperature is beyond 600℃, the diameters of ZnO nanorods obviously decrease and the aggravating tendency of nanorods between each other also increase. Annealing treatment can greatly influence the gas sensing properties of ZnO nanorods. Comparing with ZnO nanorods without annealing treatment, the gas sensing property of ZnO nanorods to H2 with concentration of 2.5×10-6 can increase from 2.22 to 3.56. ZnO nanorods annealed at 400 ℃ exhibit optimum gas sesing property to H2 gas.
基金This work was financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0006-0120)the National Key R&D Program of China(No.2021YFB3700402)the National Natural Science Foundation of China(Nos.52074092 and 52274330).
文摘We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),and electron backscatter diffraction(EBSD).The findings reveal that annealing processing has a significant impact on diminishing residual stresses.As the annealing temperature rose from 950 to 1150℃,the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa.Moreover,the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration.Meanwhile,the annealing treatment promotes the decomposition of the Laves,accompanied by the precipitation ofμ-(Mo_(6)Co_(7))starting at 950℃ and reaching a maximum value at 1050℃.The tensile strength and plasticity of the annealing alloy at 1150℃ reached the maximum(1394 MPa,56.1%)which was 131%,200%fold than those of the as-cast alloy(1060 MPa,26.6%),but the oxidation process in the alloy was accelerated at 1150℃.The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase,along with the shape and dispersal of theγ′phase.
基金The authors are grateful to the financial support from Natural Science Foundation of Guangdong Province,China(No.2018A030313950)Shenzhen Basic Research Project(JCYJ20170815153143221,and JCYJ20170815153210359,JCYJ20170306141749970).
文摘In the present study,the Mg-4Zn-0.6Y-0.5Nd alloy was hot extruded and annealed at 200℃,225℃ and 250℃ for different time to optimize microstructure and mechanical properties.The results exhibit that the dual-size grain structure and linearly distributed secondary phase are the main feature of the as-extruded Mg-Zn-Y-Nd alloy,which can be described as the elongated grain is surrounded by the fine equiaxed grain.Moreover,the as-extruded alloy shows strong{011^(-)0}fiber texture feature,especially for the large elongated grains.The annealing treatment results in static recrystallization,which increases fine equiaxed grains but decreases large elongated grains.In addition,the equiaxed grains formed during the annealing treatment demonstrate relative random orientations,which weaken the{011^(-)0}fiber texture of the alloy.Moreover,during the annealing at 225℃and 250℃,the extension twins begin to form in the alloy and weaken the{011^(-)0}fiber texture of the alloy further.The annealing treatment has little influence on the linearly distributed secondary phase but promotes the coarsening of small precipitates at 250℃.The annealing treatment could increase the yield and ultimate strength,but the elongation decreases,especially at higher temperature.Such a variation can be ascribed to the evolution of texture,grain structure,twinning and precipitation during the annealing treatment.
基金financially supported by the National Natural Science Foundation of China(No.51974184)the National MCF Energy R&D Program of China(No.2018YFE0306102)。
文摘The mechanical properties of an austenite-based Fe-Mn-Al-C lightweight steel were improved by co-precipitation of nanoscale Cu-rich and κ-carbide particles.The Fe-28Mn-9Al-0.8C-(0,3)Cu (wt.%) strips were near-rapidly solidified and annealed in the temperature range from 500 ℃ to 700 ℃.The microstructure evolution and mechanical properties of the steel under different annealing processes were studied.Microstructural analysis reveals that nanoscale κ-carbides and Cu-rich particles precipitate in the austenite and ferrite of the steel in this annealing temperature range.Co-precipitation of nanoscale Cu-rich particles and κ-carbides provides an obvious increment in the yield strength.At the annealing temperature of 600 ℃,both the yield strength and ultimate tensile strength of Fe-28Mn-9Al-0.8C-3Cu (wt.%) steel strip are the highest.The total elongation is 25%,which is obviously higher than that of Cu-free steel strips,for the addition of Cu reduces the large sized κ-carbides precipitated along austenite/ferrite interfaces.When the annealing temperature rises to 700 ℃,the strength and ductility of the two steel strips deteriorate due to the formation of massive intergranular κ-carbides precipitated along austenite/ferrite interfaces.It can be concluded that a proper co-precipitation of Cu-rich particles and κ-carbides would improve the properties of austenite-based Fe-Mn-Al-C steel.
基金Project(2012CB691503)supported by the National Key Basic Research and Development Program of ChinaProject(2016B090931001)supported by Science and Technology Program of Guangdong Province,China
文摘Al-Zn-Mg-Sc-Zr alloy samples were annealed to four different states (under-aging, peak-aging, over-aging and double-aging) and then thoroughly investigated by means of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), tensile and fatigue crack growth rate tests to explore the influence of annealing treatment on microstmcture and fatigue crack growth behavior. The results indicate that Al3(Sc,Zr) particles can effectively refine grains and enhance tensile properties and fatigue properties. After annealing treatment, the under-aged sample and double-aged sample obtained average grain sizes of 4.9473 and 4.1257 μm, and the maximum value of yield/tensile strength (561 MPa/581 MPa) was obtained in peak-aged state. In the Paris region, fatigue crack growth rate, crack deflection and bifurcation, crack blunting and inter/trans-granular propagation were discussed based on data fitting and Laird model and Griffith theory. And the results show that the under-aged sample possesses the best resistance to fatigue crack propagation and the most tortuous and bifurcated crack path. For all samples, the fatigue crack growth rate in the rupture region was inversely proportional to yield strength.
基金Funded by the Fund for Shanxi Key Subjects Constructionthe National Natural Science Foundation of China(No.51275332)the Natural Science Foundation of Shanxi Province(No.201601D011036)
文摘In order to improve microstructure distribution and mechanical properties of Mg alloy joint by annealing treatment, die-casting AZ31 Mg alloy was successfully welded at rotation speed of 1 400 rpm and travel speed of 200 mm/min. The welded joints were annealed at 150-300 ℃ for 15-120 min and then were subjected to transverse tensile. The microstructure of annealed joints was analyzed by optical microscopy and electron backscatter diffraction. The experimental results indicate that(0001) texture intensity in stir zone significantly reduces and sharp transition of grain size is relieved in the interface between stir zone and thermo-mechanically affected zone after annealed at 200 ℃ for 30 min. Meanwhile, the elongation is increased from 7.5% to 13.0% and strength is increased slightly. It is because that annealing treatment can inhibit twin transformation and retain its ability to coordinate deformation during tensile deformation, which contributes to the improvement of plasticity. In addition, annealing treatment can increase the width of interfacial transition zone and lead to gradual transition of grain size between the SZ and TMAZ, which balances dislocation diffusion rate in different zone.
基金Project(2020A1515110869)supported by Guangdong Basic and Applied Basic Research Foundation,ChinaProject(GJHZ20190822095418365)supported by Shenzhen International Cooperation Research,China+3 种基金Project(51775351)supported by the National Natural Science Foundation of ChinaProject(2019011)supported by the NTUT-SZU Joint Research Program,ChinaProject(2019040)supported by the Natural Science Foundation of SZU,ChinaProject(ASTRA6-6)supported by the European Regional Development Fund,European Union。
文摘Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).
基金supported by the Shanghai "Qi-Ming-Xing" science and technology foundation for young scientists(No.06QB14032)
文摘The effect of annealing treatment on the microstructures and mechanical properties of cold-sprayed Ni coating was investigated by conducting micro-hardness and tensile tests and using a normal optical microscope (OM) ,a scanning electron microscope ( SEM), a transmission electron microscope (TEM) and an electron probe X-ray microanalyzer (EPMA). The results show that following the increase of the annealing temperature ,the micro-hardness of cold-sprayed Ni coating decreases and the elongation after fracture increases, while the tensile strength increases before decreasing. The tensile deformation and fracture behavior change from a typical brittle fracture to a hybrid brittle and ductile fracture, then to a typical ductile failure. It is found that when annealed at an elevated temperature ( e. g. 900℃ ) ,the grains tend to grow abnormally with the oxides spheroidizing and the defects agglomerating at the interfaces, causing the tensile strength reduction of the cold-sprayed nickel coating. It is also pointed out that the tensile strength of the cold-sprayed Ni coating can be significantly improved by the appropriate annealing procedures, but the elongation after fracture cannot be clearly increased because it is difficult to eliminate the main defects in the coating by the following heat treatments.
基金Project(0122021300) supported by the Natural Science Foundation of Henan Province
文摘Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12%ADSC (0.24% Al2O3, mass fraction) and 0.25%ADSC (0.50% Al2O3) subjected to different annealing treatments were conducted. The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix; the particles range in size from 20 to 50 nm with an interparticle spacing of 30100 nm. The produced 0.12%ADSC can maintain more than 87% hardness retention after 900 ℃, 1 h annealing treatment; the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h, followed by cold deformation of 84%; local grain growth can be observed after 1 050 ℃, 1 h annealing treatment. The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.
文摘In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs to be better understood. Nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution during 20 minutes and then annealed in air atmosphere. In-situ X-ray diffraction analysis, coupled with thermogravimetry, gives us an inside on the oxidation behaviour of titanium dioxide nanotube layers compared to bulk reference samples. Structural studies were performed at 700°C for 12 h in order to follow the time consequences on the oxidation of the material, in sufficient stability conditions. In-situ XRD brought to light that the amorphous oxide layer induced by anodization is responsible for the simultaneous growths of anatase and rutile phase during the first 30 minutes of annealing while the bulk sample oxidation leads to the nucleation of a small amount of anatase TiO<sub>2</sub>. The initial amorphous oxide layer created by anodization is also responsible for the delay in crystallization compared to the bulk sample. Thermogravimetric analysis exhibits parabolic shape of the mass gain for both anodized and bulk sample;this kinetics is caused by the formation of a rutile external protective layer, as depicted by the associated in-situ XRD diffractograms. We recorded that titanium dioxide nanotube layers exhibit a lower mean mass gain than the bulk, because of the presence of an initial amorphous oxide layer on anodized samples. In-situ XRD results also provide accurate information concerning the sub-layers behavior during the annealing treatment for the bulk and nanostructured layer. Anatase crystallites are mainly localized at the interface oxide layer-metal and the rutile is at the external interface. Sample surface topography was characterized using scanning electron microscopy (SEM). As a probe of the photoactivity of the annealed TiO<sub>2</sub> nanotube layers, degradation of an acid orange 7 (AO7) dye solution and 4-chlorophenol under UV irradiation (at 365 nm) were performed. Such titanium dioxide nanotube layers show an efficient photocatalytic activity and the analytical results confirm the degradation mechanism of the 4-chlorophenol reported elsewhere.
基金financially supported by the National Key Technologies R & D Program of China (No. 2016YFB0300901)
文摘Taking extruded Al–Zn–Mg–Cu alloy(7A04 alloy) bars as the research object, the effect and mechanism of pre-annealing treatments on the microstructure and mechanical properties of the aged alloy bars were investigated. The results show that a pre-annealing treatment at 350°C for 15 h before a T6 treatment substantially reduced the sensitivity of the microstructure and mechanical properties of the extruded 7A04 aluminum alloy specimens toward the extrusion temperature. The average grain sizes of the specimens extruded at 390 and 430°C after T6 treatment were 3.4 and 8.1 μm, respectively, and their elongations to failure were 7.0% and 9.2%, respectively. However, after pre-annealing + T6 treatment, the differences in both the grain sizes and the elongations of the specimens became small, i.e., their average grain sizes were 3.2 and 3.8 μm and their elongations were 12.0% and 13.3%, respectively. For the specimens extruded at the same temperature, pre-annealing treatment obviously improved the plasticity of the alloy, which is attributed to an increase in soft texture or to grain refinement in the specimens as a result of the pre-annealing + T6 treatment.
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholar
文摘LiNi0.5Mn1.5O4 was prepared under different cooling conditions. The electrochemical properties of LiNi0.5Mn1.5O4 prepared under different cooling conditions were investigated. The results show that LiNi0.5Mn1.5O4 synthesized with or without annealing treatment has similar X-ray diffraction patterns that can be indexed to cubic spinel structure. The mass loss occurring above 650 ℃ during the heating process can be mostly gained during the cooling process. LiNi0.5Mn1.5O4 synthesized with an annealing treatment exhibits almost one voltage plateau at around 4.7 V and higher capacity with a quick fading upon cycling, whereas LiNi0.5Mn1.5O4 synthesized without annealing treatment shows two voltage plateaus at around 4.1 and 4.7 V and superior capacity retention upon cycling both at rates of 1/7C and 1C, though the capacity is not high.
文摘The effects of Cu addition and annealing treatment on the magnetic properties and microstructure of Ndl2.3Fe81.7-xCuxB6 (x=0-1.2) ribbons melt-spun and annealed were systematically investigated by the methods of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Optimum magnetic properties were achieved by annealing melt-spun Nd12.3Fe81.5Cu0.2B6 ribbons at 550℃ for 15 min, which only contained Nd2Fe14B phase. The remanence, coercive force, and maximum energy product increase by 18.4%, 36.2%, and 49% respectively compared with those of Cu-free samples. The sig- nificant improvement in magnetic properties originates from the freer grains of the samples by introducing Cu, which leads to the stronger exchange-coupling between neighboring grains.
文摘The ZnO-Al films were prepared by R.F. magnetron sputtering system using a Zn-Al target (with purity of (99.99%).) The obtained films were characterized by X-ray diffraction, SEM and optical and electrical measurements. The experimental results show that the properties of ZnO films can be further improved by annealing treatment. The crystallinity of ZnO films becomes better, and the optical gap energy is decreased, but thermoelectric power is enhanced after heat treatment. The optical gap energy decreases from 3.75 eV to 3.68 eV when the annealing temperature increases from 25 ℃ to 400 ℃.This can be ascribed to the decrease of carrier concentration, resulting in Burstein shift.
文摘The best linear fit of Hc(T)/Ms(T) vs 2k1(T)/0Ms2(T) infers that Hc is determined by a nucleation process in nanocrystalline twophase magnet. The condition of the grain shapes is improved after adding Hf and Ga, but the surfaces are deteriorated by some precipitates on the boundary. Taking into account the values of , Neff, the results of TEM, and Moessbauer spectroscopy, the magnetic field heattreatment not only induces grain refinement but also causes a uniform distribution of the soft and hard phases. It is one recommendable method to improve the condition of the microstructure. Both the remanence and energy product values are increased by 20 %-30 % for all ribbons after annealing with magnetic field. The magnetic interaction in Nd2Fe14B/Fe3B+Fe based nanocrystalline twophase magnets is studied using M plots in this paper. It is found that the exchangecoupled interaction is greatly enhanced in the sample annealed with magnetic heattreatment, specially, Nd4Fe76Co3Hf0.5Ga0.5B16 which achieves the highest energy product (BH)max=126.4 kJ/m3.
文摘Rapid thermal annealing (RTA) of Si+-implanted SI-GaAs was studied in an annealing system using a halogen lamp heater. Good electrical properties in the activated layers were achieved. The co-implantation of phosphorus (P+) with Si+ into SI-GaAs can improve mobility of the ion implanted layer. Hall mobility of 4600-4700 cm2/V · s and activation efficiencies of 75-85% were obtained. These results are better than those obtained from samples without P+ co-implantation. Deep level transient spectroscopy measurements showed that the number of deep levels and their concentrations decreased. P atoms occupy the As vacancies and enhance the activation efficiency and average Hall mobility. GaAs MESFETs with 0.5 W output power and associated gain of 3.5 dB at 6 GHz were obtained by this method.
基金supported by the National Natural Science Foundation of China(No.50603029)the Innovation Foundation of Center for Molecular Science,Chinese Academy of Sciences(CMS-Y200724)
文摘Syndiotactic polypropylene (sPP) as-spun fiber (sPP1) and drawn fiber (sPP2) were prepared by melt-spinning and melt-spinning/hot-drawing, respectively. The structure transition of the two fibers induced by annealing at different temperatures and the corresponding mechanical properties were subsequently investigated by the combination of Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD) and tensile testing. The results indicate that the chain conformation and crystal forms of the two sPP fibers are not obviously changed at low annealing temperature (40℃). With increasing the annealing temperature, the trans-planar conformation and mesophase in sPP1 and sPP2 fibers can be completely transformed to helical conformation and crystal form I under tension. Upon removing the tension, a small amount of mesophase and trans-planar conformation will be regained. The mechanical properties of the annealed fibers are manifestly dependent on their initial structure and the annealing temperature.
文摘Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns.
文摘In order to explore the effect of high-temperature annealing on the mechanical performances and microstructures of different oxygen SiC fibers, two types of silicon carbide(SiC)-based fibers, specified as XD-SiC fibers(low oxygen) and Nicalon-201 fibers(high oxygen), were annealed in Ar for 1 h at 800 ℃, 1 000 and 1 200 ℃, respectively. Mechanical properties of these fibers were characterized via a monofilament tensile method, with observation of the damaged monofilament by SEM. Also, the effects of annealing on the microstructure and chemical compositions of the fibers were studied. The experimental results indicated that the tensile strength decreased with the increase of annealing temperatures,after annealing-treatment at 1200℃, XD-SiC fibers remained 84% of its original strength, while Nicalon-201 fibers remained only 58% of its original strength. Crystallization and chemical composition of the fibers are the dominating factors for their mechanical performance at high temperatures. The microstructure changes of XD-SiC fibers are mainly composed of the growth of β-SiC, for Nicalon-201 fibers, evaporation of gases is the main change for microstructure.