期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Effect of Interfacial Strength on the Flexural Behavior of Glass Fiber Reinforced Polymer(GFRP) Reinforced Concrete Beam 被引量:1
1
作者 张亚芳 YANG Wenlong +2 位作者 LIU Hao CHEN Peiran LIU Feng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期1001-1007,共7页
The reinforcement/matrix interfacial strength has been considered as the key factor when glass fiber reinforced polymer(GFRP) bar is mixed with concrete. In this paper, based on micromechanics, fourpoint bending numer... The reinforcement/matrix interfacial strength has been considered as the key factor when glass fiber reinforced polymer(GFRP) bar is mixed with concrete. In this paper, based on micromechanics, fourpoint bending numerical models with and without glass fiber of different interfacial strength have been set up to simulate the damage process of GFRP reinforced concrete beam. The results show that the higher the interfacial strength is, the higher the ultimate bearing capacity of beams, and the less the opening width and height of cracks will be reached. Furthermore, mixing of glass fibers has less influence on the damage process when the interfacial strength is weak, however, it can help to improve the ultimate bearing capacity of the beams, retard the expansion of cracks and improve the toughness when the interfacial strength is high. 展开更多
关键词 interfacial strength GFRP damage process DEBONDING numerical simulation
下载PDF
Effect of Interfacial Strength on Bending Properties of Reinforced Concrete Beams 被引量:1
2
作者 ZHANG Yafang YANG Wenlong LIU Hao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1161-1166,共6页
By taking into consideration of meso-scopic level, four-point bending numerical model of different interfaces was established to analyze the effect of interracial strength on the bending properties of reinforced concr... By taking into consideration of meso-scopic level, four-point bending numerical model of different interfaces was established to analyze the effect of interracial strength on the bending properties of reinforced concrete beams with the diagrams of crack pattern, the load- step curve and the cumulative AE- loading step curve. The experimental result shows that the peak load, the cracking load and the stiffness before cracking increase with the interfacial strength. Furthermore, the specimen with strong interface presents high brittleness during the failure process, while both bearing capability and ductility could be found in the specimen with moderate interfacial strength. 展开更多
关键词 reinforced concrete interfacial strength peak load acoustic emission
下载PDF
Study on Single-fiber Pull-out Method for Evaluating Interfacial Strength in CFRP
3
作者 Yudong, H. Zhiqian, Zh. +1 位作者 Lixun, L. Qiwei, L. 《High Technology Letters》 EI CAS 1995年第1期105-108,共4页
Single-fiber pull-out testing (SFPOT) methods are frequently used to evaluate the interfacial adhesion between fiber and matrix in composite materials. To make such pull-out measurements, however, the length of embedd... Single-fiber pull-out testing (SFPOT) methods are frequently used to evaluate the interfacial adhesion between fiber and matrix in composite materials. To make such pull-out measurements, however, the length of embedded fiber must be small enough so that the fiber does not break before it is pulled freely. This is difficult to achieve by conventional methods with fibers of small diameter, such as the carbon fibers. In this paper, a fiber pull-out experiment is described. Specialized apparatus in our laboratory, as well as this technique for sample preparation are discussed in detail. The interfacial shear strength of carbon fiber/resin matrix composites is analyzed quantitatively by using the finite-element method. The SFPOT system has been proved to be an available means for the study of interfacial properties for carbon fiber/resin matrix composites. 展开更多
关键词 Carbon fiber Composite materials interfacial shear strength Single-fiber pull-out
下载PDF
Influence of Rolling Treatment on Interfacial Shear Strength of Steel-mushy Al-7graphite Bonding Plate 被引量:1
4
作者 PengZHANG YunhuiDU +3 位作者 HanwuLIU DabenZENG JianzhongCUI LiminBA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期694-696,共3页
At room temperature, the rolling treatment of steel-mushy Al-7graphite bonding plate was carried out under different relative reduction. The influence of rolling on interfacial mechanical property of this bonding plat... At room temperature, the rolling treatment of steel-mushy Al-7graphite bonding plate was carried out under different relative reduction. The influence of rolling on interfacial mechanical property of this bonding plate was studied. The results show that, for steel-mushy Al-7graphite bonding plate which is made up of 1.2 mm in thickness 08AI steel plate and 2.0 mm in thickness Al-7graphite layer, there is a nonlinear relationship between interfacial shear strength of bonding plate and relative reduction of rolling. When relative reduction of rolling is smaller than 2.59%, with the increasing of relative reduction, interfacial shear strength of bonding plate increases gradually. When relative reduction of rolling is bigger than 2.59%, with the increasing of relative reduction, interfacial shear strength of bonding plate decreases continuously. When relative reduction of rolling is 2.59%, the largest interfacial shear strength 77.0 MPa can be obtained. 展开更多
关键词 Rolling treatment Relative reduction interfacial shear strength
下载PDF
Relationship between interfacial structure and property of steel-mushy Al-28Pb bonding pate 被引量:1
5
作者 张鹏 杜云慧 +3 位作者 刘汉武 张君 曾大本 巴立民 《Journal of Central South University of Technology》 EI 2006年第1期12-16,共5页
The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The... The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The results show that there is a nonlinear relationship between the ratio of Fe-Al compound at the interface and the interfacial shear strength. When the ratio of Fe-Al compound at the interface is smaller than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength increases gradually; when the ratio of Fe-Al compound at the interface is larger than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength decreases continuously; when the ratio of Fe-Al compound at the interface is 71.4%, the largest interfacial shear strength 70.2MPa is obtained. 展开更多
关键词 interfacial structure ratio of Fe-Al compound interfacial shear strength
下载PDF
Adjusting the interfacial adhesion via surface modification to prepare high-performance fibers
6
作者 Ning Han Xiaolin Zhao Vijay Kumar Thakur 《Nano Materials Science》 EI CAS CSCD 2023年第1期1-14,共14页
Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE f... Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE fiber is smooth and demonstrates no-polar groups.The weak interfacial adhesion between fiber and resin seri-ously restricts the applications of UHMWPE fiber.Therefore,the surface modification treatments of UHMWPE fiber are used to improve the interfacial adhesion strength.The modified method by adding nanomaterials elu-cidates the easy fabrication,advanced equipment and proper technology.Thus,the progress of UHMWPE nanocomposite fibers prepared via adding various nanofillers are reviewed.Meanwhile,the effects of other various methods on surface modification are also reviewed.This work advances the various design strategies about nano technologies on improving interfacial adhesion performance via treatment methodologies. 展开更多
关键词 UHMWPE fiber Surface modification interfacial adhesion strength NANOCOMPOSITES
下载PDF
Interfacial mechanical property of steel-mushy Al-20Sn bonding
7
作者 PengZhang YunhuiDu +3 位作者 HanwuLiu DabenZeng JianzhongCui LiminBat 《Journal of University of Science and Technology Beijing》 CSCD 2004年第2期165-168,共4页
The bonding of a steel plate to Al-20Sn slurry was conducted using thecasting rolling technique. The surface of the steel plate was defatted, descaled, immersed (inK_2ZrF_6 flux aqueous solution) and stoved. Al-20Sn s... The bonding of a steel plate to Al-20Sn slurry was conducted using thecasting rolling technique. The surface of the steel plate was defatted, descaled, immersed (inK_2ZrF_6 flux aqueous solution) and stoved. Al-20Sn slurry was prepared using the electromagneticmechanical starring method. The interfacial mechanical property of the bonding plate was researchedto determine the relationship between the diffusion time and the interfacial shear strength. Inorder to identify the mechanism of bonding, the interfacial structure of the bonding plate wasstudied. The results show that at a prebeat temperature of the steel plate of 505 deg C and a solidfraction of Al-20Sn slurry of 35 percent, the relationship between the interfacial shear strength Sand the diffusion time t is S=28.8+4.3t-0.134t^2 +0.0011t^3. When the diffusion time is 22 s, thelargest interfacial shear strength is 70.3 MPa, and the corresponding interface is a new one whichis made up of Fe-Al compound and Fe-Al solid solution alternatively and in a right proportion. Inthis interfacial structure, the interfacial embrittlement does not happen and Fe-Al compound canplay its role in strong combination adequately. 展开更多
关键词 interfacial shear strength diffusion time interfacial structure
下载PDF
Polyetherketoneketone/carbon fiber composites with an amorphous interface prepared by solution impregnation
8
作者 ZHANG Feng LI Bo-lan +5 位作者 JIAO Meng-xiao LI Yan-bo WANG Xin YANG Yu YANG Yu-qiu ZHANG Xiao-hua 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期692-702,共11页
Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundle... Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs. 展开更多
关键词 Polyetherketoneketone Carbon fiber WETTABILITY Amorphous adhesion interfacial strength
下载PDF
The interface structure and property of magnesium matrix composites:A review
9
作者 Hongwei Xiong Lidong Gu +7 位作者 Jingya Wang Liping Zhou Tao Ying Shiwei Wang Haitao Zhou Jianbo Li Yang Gao Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2595-2623,共29页
Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts ... Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts as a“bridge”between the matrix and reinforcement,playing crucial roles in critical processes such as load transfer,failure behavior,and carrier transport.A deep understanding of the interfacial structures,properties,and effects holds paramount significance in the study of composites.This paper presents a comprehensive review of prior researches related to the interface of Mg matrix composites.Firstly,the different interfacial structures and interaction mechanisms encompassing mechanical,physical,and chemical bonding are introduced.Subsequently,the interfacial mechanical properties and their influence on the overall properties are discussed.Finally,the paper addresses diverse interface modification methods including matrix alloying and reinforcement surface treatment. 展开更多
关键词 Mg matrix composites INTERFACE interfacial strength interfacial modification
下载PDF
Microstructure and properties at bonding interface of AA4045/AA3003 aluminum alloy cladding billet prepared by semi-continuous casting 被引量:2
10
作者 韩星 邵博 +5 位作者 左克生 蒋琳 张海涛 何立子 秦克 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期658-664,共7页
AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at th... AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements. 展开更多
关键词 aluminum alloy cladding billet bonding interface DIFFUSION interfacial strength
下载PDF
Static and dynamic mechanical behaviour of ECO-RPC 被引量:2
11
作者 赖建中 孙伟 +1 位作者 林玮 金祖权 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期197-202,共6页
Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacemen... Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacement of ground fine quartz sand with natural fine aggregate.The effect of steel fiber volume fraction and curing ages on the static mechanical behaviour ofECO-RPC was studied. Using the split Hopkinson pressure bar technique, the dynamic mechanicalbehaviour of ECO-RPC was investigated under different strain rates. The results show that the staticmechanical behaviour of ECO-RPC increases with the increase of steel fiber volume fraction andcuring ages. The type of ECO-RPC with the substitution of 25% ultra-fine slag, 25% ultra-fine flyash and 10% silica fume is better than the others with compressive strength, flexural strength, andfracture energy more than 200 MPa, 60 MPa and 30 kJ/m^2, respectively. ECO-RPC has excellent strainrate stiffening effects under dynamic load. Its peak stress, peak strain and the area understrain-stress curve increase with the increase of strain rate. Its fracture pattern changes frombrittleness to toughness under high strain rates. 展开更多
关键词 ecological reactive powder concrete (ECO-RPC) industrial waste powder interfacial bond strength fracture energy static and dynamic mechanical behaviour high strainrate
下载PDF
Copper-Ti_3SiC_2 composite powder prepared by electroless plating under ultrasonic environment 被引量:11
12
作者 ZHANG Zhongbao XU Shaofan 《Rare Metals》 SCIE EI CAS CSCD 2007年第4期359-364,共6页
In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carrie... In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carried out at middle temperature (62-65℃) with the application of ultrasonic agitation. The copper deposition rate was determined by measuring the weight gain of the powder after plating. It has been found that the pretreatment of Ti3SiC2 powder is very important to obtain copper nanoparticles on the surface of Ti3SiC2 The optimum procedure before plating aimed to add activated sites and the adjustment of the traditional composition of the electroless copper plating bath could decelerate the copper deposition rate to 0.8 gm/h. X-ray diffraction (XRD) indicates that the chemical composition of the plating layer is copper. SEM images show that the surface of the Ti3SiC2 particles is successfully coated with continuous copper layer. The wetting property between the copper matrix and Ti3SiC2 can be improved so as to increase the interfacial strength. 展开更多
关键词 COMPOSITES electroless plating TI3SIC2 ULTRASONIC interfacial strength
下载PDF
Crack initiation,propagation and saturation of TiO_2 nanotube film 被引量:2
13
作者 邹俭鹏 WANG Ri-zhi 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期627-633,共7页
Vertically orientated TiO2 nanotube array with diameters ranging from 60 up to 80 nm and length of 4 μm was grown on titanium by anodization.Crack initiation,propagation and saturation were studied using the substrat... Vertically orientated TiO2 nanotube array with diameters ranging from 60 up to 80 nm and length of 4 μm was grown on titanium by anodization.Crack initiation,propagation and saturation were studied using the substrate straining test.The results show that annealing obviously modifies the interfaces.With the increase of tensile strain,cracks in TiO2 nanotube films propagate rapidly and reach the saturation within a narrow strain gap.Interfacial shear strengths of TiO2 nanotube films without annealing,with 250 ℃ annealing and with 400 ℃ annealing can be estimated as 163.3,370.2 and 684.5 MPa,respectively.The critical energy release rates of TiO2 nanotube films are calculated as 49.6,102.6 and 392.7 J/m2,respectively.The fracture toughnesses of TiO2 nanotube films are estimated as 0.996,1.433 and 2.803 MPa-m1/2,respectively.The interfacial bonding mechanism of TiO2 nanotube film is chemical bonding. 展开更多
关键词 TiO2 nanotube anodization interfacial shear strength CRACKING energy release rate
下载PDF
Debonding phenomenon of TiO_2 nanotube film
14
作者 邹俭鹏 WANG Ri-zhi 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2691-2699,共9页
Curvature method was used to measure the residual stress and substrate straining tensile test was carried out to study the debonding behavior of TiO2 nanotube film. The results indicate that the internal residual stre... Curvature method was used to measure the residual stress and substrate straining tensile test was carried out to study the debonding behavior of TiO2 nanotube film. The results indicate that the internal residual stress is -54 MPa. The strains of debonding initiation of TiO2 nanotube films without annealing, with 250 °C annealing and with 400 °C annealing are 2.6%, 5.1% and 8.6%, respectively, and the average radii of the debonding patches with debonding initiation are 27.5, 17.1 and 19.4 μm, respectively. The true critical debonding stresses of TiO2 nanotube films without annealing, with 250 °C annealing and with 400 °C annealing can be estimated as 220.4, 394.5 and 627.9 MPa, respectively. Interfacial shear lag model is modified and polynomial fitting equation of the interfacial shear strength of TiO2 nanotube film is demonstrated under debonding conditions. The modification and polynomial fitting are reliable since good agreement of the interfacial shear strengths after fitting is obtained compared with those results from the crack density analysis. 展开更多
关键词 TiO2 nanotube interfacial shear strength debonding behavior debonding density debonding radius internal residued stress
下载PDF
辐射法制备环氧功能化聚乙烯-辛烯及在尼龙6增韧改性中的应用 被引量:3
15
作者 梁青如 季珎琰 +4 位作者 董春雷 张帆 邢哲 安雅睿 吴国忠 《辐射研究与辐射工艺学报》 CAS CSCD 2023年第1期24-32,共9页
利用60Coγ射线辐射接枝法制备环氧功能化的乙烯-辛烯共聚物(POE-g-PGMA),并且采用双螺杆熔融挤出法制备添加POE-g-PGMA的尼龙6/聚乙烯-辛烯(PA6/POE)合金。研究了添加POE-g-PGMA对PA6/POE合金力学性能、热性能、表面形貌、界面相容性... 利用60Coγ射线辐射接枝法制备环氧功能化的乙烯-辛烯共聚物(POE-g-PGMA),并且采用双螺杆熔融挤出法制备添加POE-g-PGMA的尼龙6/聚乙烯-辛烯(PA6/POE)合金。研究了添加POE-g-PGMA对PA6/POE合金力学性能、热性能、表面形貌、界面相容性和吸水特性的影响。结果表明:γ射线引发了GMA在POE上的接枝聚合反应,PA6/POE合金断面的SEM照片显示添加POE-g-PGMA后POE分散相粒径显著减小,表明POE-gPGMA起到增容剂的作用;Molau试验的结果证实了POE-g-PGMA与PA6之间的增容反应;热分析表明,分散相POE及POE-g-PGMA的加入对PA6的熔融行为影响不大,但在降温结晶过程中结晶温度提前约18°C,结晶度提升约为4.5%。此外,与未增容PA6/POE合金相比,增容PA6/POE合金的缺口冲击强度显著提高,在本实验条件下,POE-g-PGMA添加量为3%时缺口冲击强度最高值为纯PA6的2.75倍。 展开更多
关键词 辐射接枝 环氧功能化 尼龙6 界面相容性 缺口冲击强度
下载PDF
First-principles investigation on stability and electronic structure of Sc-dopedθ′/Al interface in Al−Cu alloys 被引量:6
16
作者 Dong-lan ZHANG Jiong WANG +2 位作者 Yi KONG You ZOU Yong DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3342-3355,共14页
The properties of Sc-dopedθ′(Al_(2)Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations.Sc-doped semi-coherent and coherentθ′(Al_(2)Cu)/Al interfaces(Sc doped in Al slab(S1 site),Sc ... The properties of Sc-dopedθ′(Al_(2)Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations.Sc-doped semi-coherent and coherentθ′(Al_(2)Cu)/Al interfaces(Sc doped in Al slab(S1 site),Sc doped inθ′slab(S2 site))were modeled based on calculated results and reported experiments.Through the analysis of interfacial bonding strength,it is revealed that the doping of Sc at S1 site can significantly decrease the interface energy and increase the work of adhesion.In particular,the doped coherent interface with Sc at S1 site which is occupied by interstitial Cu atoms has very good bonding strength.The electronic structure shows the strong Al—Cu bonds at the interfaces with Sc at S1 site,and the Al—Al bonds at the interfaces with Sc at S2 site are formed.The formation of strong Al—Cu and Al—Al bonds plays an important role in the enhancement of doped interface strength. 展开更多
关键词 Al−Cu alloys Sc-dopedθ′/Al interface interfacial bonding strength electronic structure
下载PDF
Surface Modification of Polyethylene Terephthalate(PET) Fiber by Roll-to-Roll Treatment in Atmospheric Ar/O_2 Dielectric Barrier Discharge(DBD) Plasma 被引量:2
17
作者 李嘉灵 林捷 +3 位作者 刁颖 胡倩倩 张菁 徐金洲 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期88-92,共5页
In this work,polyethylene terephthalate(PET) fibers were continuously treated by atmospheric dielectric barrier discharge(DBD) in Ar mixed O2 plasma,and the discharge was characterized by electrical function and optic... In this work,polyethylene terephthalate(PET) fibers were continuously treated by atmospheric dielectric barrier discharge(DBD) in Ar mixed O2 plasma,and the discharge was characterized by electrical function and optical diagnostics.It is found that the interfacial adhesion strength between treated PET fiber and resorcinol formaldehyde latex(RFL)(little)-rubber was improved(about 50%) by the measurement of interfacial shear strength(IFSS) and peel test.The wettability was improved rapidly in the initial treatment time.It is considered that oxidation chemical reaction as the major role of PET fiber surface modification is ahead of the physical etching effect.The high density of atomic oxygen in the plasma by optical emission spectroscopy supports the purpose.According to the scanning electron micrograph(SEM) image in the work,the longer treatment time obviously caused physical etching effect,which shall be less responsible for the improvement of the wettability. 展开更多
关键词 atmospheric pressure plasma polyethylene terephthalate(PET) fiber interfacial shear strength(IFSS) adhesion strength gas analyzer
下载PDF
Bridging Effect and Efficiency of Partly-Cured Z-pin Reinforced Composite Laminates 被引量:1
18
作者 Chu Qiyi Li Yong +2 位作者 Xiao Jun Huan Dajun Zhang Xiangyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第2期177-187,共11页
To study the bridging effect of partly-cured Z-pin,Z-pins with different curing degrees are manufactured by controlling pultrusion parameters.A unit cell is selected to analyze the stress of Z-pinned laminates and the... To study the bridging effect of partly-cured Z-pin,Z-pins with different curing degrees are manufactured by controlling pultrusion parameters.A unit cell is selected to analyze the stress of Z-pinned laminates and the quantitative relationship between the maximum bridging force and Z-pin diameter,embedded length,interfacial shear strength and tensile strength is acquired.The Z-pin″bridging law″test and Z-pin tensile test are carried out to study the effect of Z-pin′s curing degree on bridging effect,and the bridging efficiency is defined to evaluate the reinforcement effect of Z-pin.The modeⅠinterlaminar fracture toughness(G_(ⅠC))is measured by the double cantilever beam test.The experimental results show that Z-pin′s co-curing with laminate matrix can improve the bridging force significantly and the fitting results show a linear relationship between Z-pin curing degree and interfacial shear strength.The three-dimensional images of the surface of pullout Z-pins indicate that the failure mode changed from totally interfacial debonding to a mixed mode.Finally,the reinforcement by partly-cured Z-pin can be used to further enhance the interlaminar toughness.Compared with completely-cured Z-pin,G_(ⅠC) of Z-pin with 67.6% curing degree increases by 47.0%. 展开更多
关键词 polymer-matrix composites through-the-thickness reinforcement Z-PIN interfacial shear strength fracture toughness
下载PDF
Mechanical Properties and ITZ Microstructure of Recycled Aggregate Concrete Using Carbonated Recycled Coarse Aggregate 被引量:7
19
作者 伍君勇 张云升 +2 位作者 ZHU Pinghua FENG Jincai 胡坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期648-653,共6页
The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concr... The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes. 展开更多
关键词 recycled aggregate concrete compressive strength interfacial transition zone carbonation treatment two-stage mixing approach back scattered electron
下载PDF
Influence of diffusion time on property of steel-aluminum solid to liquid bonding 被引量:1
20
作者 PengZhang DabenZeng 《Journal of University of Science and Technology Beijing》 CSCD 2002年第6期444-447,共4页
The bonding of solid steel to liquid aluminum was conducted using rapidsolidification. The influence of diffusion time on interfacial shear strength was studied. Theresults show that when the temperature of aluminum l... The bonding of solid steel to liquid aluminum was conducted using rapidsolidification. The influence of diffusion time on interfacial shear strength was studied. Theresults show that when the temperature of aluminum liquid is 700℃ and the preheat temperature ofsteel plate is 250℃, the relationship between diffusion time (t) and interfacial shear strength(σ) is σ =15.1+8.14t-037t^2 +0.005t^3, and the maximum interfacial shear strength is 71.1 MPa. 展开更多
关键词 diffusion time rapid solidification interfacial shear strength
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部