The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To ad...The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To address this issue,novel sulfate transport and mesoscale splitting tests were designed,with a focus on considering the differences between the interfacial transition zone(ITZ)and cement matrix.Under the influence of stray current,the ITZ played a pivotal role in regulating the transport and mechanical failure processes of sulfate attack,while the tortuous and blocking effects of aggregates almost disappeared.This phenomenon was termed the“stray current-induced ITZ effect.”The experimental data revealed that the difference in sulfate ion transport attributed to the ITZ ranged from 1.90 to 2.31 times,while the difference in splitting strength ranged from 1.56 to 1.64 times.Through the real-time synchronization of splitting experiments and microsecond-responsive particle image velocimetry(PIV)technology,the mechanical properties were exposed to the consequences of the stray currentinduced ITZ effect.The number of splitting cracks in the concrete increased,rather than along the central axis,which was significantly different from the conditions without stray current and the ideal Brazilian disk test.Furthermore,a sulfate ion mass transfer model that incorporates reactivity and electrodiffusion was meticulously constructed.The embedded finite element calculation exhibited excellent agreement with the experimental results,indicating its reliability and accuracy.Additionally,the stress field was determined utilizing analytical methods,and the mechanism underlying crack propagation was successfully obtained.Compared to the cement matrix,a stray current led to more sulfates,more microstructure degradation,and greater increases in thickness and porosity in the ITZ,which was considered to be the essence of the stray current-induced ITZ effect.展开更多
In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifte...In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifted mortar were measured by image analysis method. The relationship between the air void size distribution and strength of mortar was studied by methods of grey connection analysis and multiple linear regression analysis. The multiple linear regression equation was established with a correlation coefficient of 0.966. The weight of the affection of hierarchical porosity on the compressive strength ratio was also obtained. In addition, the effect of air voids on the paste-aggregate interfacial transition zone (ITZ) was analyzed by microhardness. The results show that the correlation between different pore size range and the compressive strength is negative. The effect of air void size distribution on 28 days compressive strength is different: under the condition of similar total porosity, with the increase of the porosity of the air void size, ranging from 10 to 200 mu m, and the decrease of the porosity, ranging from 200 to 1 600 mu m, the average air void diameter and mean free spacing are decreased; as well as the width of ITZ. On the contrary, the microhardness of the ITZ is increased while the compressive strength loss is decreased.展开更多
Based on the nearest surface function formula, a quantitative formula to measure the overlapping degree between the interfacial transition zone (ITZ) of neighboring aggregate particles was put forward. The formula w...Based on the nearest surface function formula, a quantitative formula to measure the overlapping degree between the interfacial transition zone (ITZ) of neighboring aggregate particles was put forward. The formula was further deduced to quantitatively analyze the influence of the volume fraction of aggregate, ITZ thickness and the maximum aggregate diameter on the overlapping degree between neighboring ITZ. The volume of ITZ was quantitatively calculated in actual concrete by comparing the nearest surface function formula with an approximate method, that is the surface area of the aggregates multiplied by the uniform thickness of the ITZ layers. The results showed that the influencing order of these three factors on the overlapping degree between neighboring ITZ in turn was the interface thickness, aggregate volume fraction and the maximum aggregate diameter; As long as the interface thickness 50 μm and the aggregate volume fraction 50%, the calculated error between two methods mentioned above is about 10 %.展开更多
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou...The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.展开更多
Backscattered electron images(BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone(ITZ) in concrete. Influences of aggregate size...Backscattered electron images(BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone(ITZ) in concrete. Influences of aggregate size(5, 10, 20, and 30 mm), water to cement ratio(0.23, 0.35 and 0.53) and curing time(from 3d to 90d) on the microstructure of interfacial transition zone between coarse aggregate and bulk cement matrix were investigated. The volume percentage of detectable porosity and unhydrated cement in ITZ was quantitatively analyzed and compared with that in the matrix of various concretes. Nanoindentation technology was applied to obtain the elastic properties of ITZ and matrix, and the elastic modulus of concrete was then calculated based on the Lu & Torquato model and self-consistence scheme by using the ITZ thickness and elastic modulus obtained from this investigation. The experimental results demonstrated that the microstructure and thickness of ITZ in concrete vary with a variety of factors, like aggregate size, water to cement ratio and curing time. The relative low elastic properties of ITZ should be paid attention to, especially for early age concrete.展开更多
The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were in...The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were investigated from the nano-scale structure perspective. The experimental results indicate that, with the increase of RHA dosages of samples, the volume fraction of high-density calcium-silicate-hydrate(HD C-S-H) in porosity and hydration product phases increases. The volume fractions of HD C-S-H in C-S-H of samples show an increasing trend with the increase of RHA dosages. RHA decreases the thickness of ITZ and increases the matrix elastic moduli of samples, however, the RHA dosoges hardly affect the thickness and elastic moduli.展开更多
This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC...This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.展开更多
This study investigates the effects of nanofillers on the interfacial transition zone(ITZ)between aggregate and cement paste by using nanoindentation and statistical nanoindentation techniques.Moreover,the underlying ...This study investigates the effects of nanofillers on the interfacial transition zone(ITZ)between aggregate and cement paste by using nanoindentation and statistical nanoindentation techniques.Moreover,the underlying mechanisms are revealed through micromechanical modeling.The nanoindentation results indicate that incorporating nanofillers increases the degree of hydration in the ITZ,reduces the content of micropores and low-density calcium silicate hydrate(LD C-S-H),and increases the content of highdensity C-S-H(HD C-S-H)and ultra high-density C-S-H(UHD C-S-H).In particular,a new phase,namely nano-core-induced low-density C-S-H(NCILD C-S-H),with a superior hardness of 2.50 GPa and an indentation modulus similar to those of HD C-S-H or UHD C-S-H was identified in this study.The modeling results revealed that the presence of nanofillers increased the packing density of LD CS-H and significantly enhanced the interaction(adhesion and friction)among the basic building blocks of C-S-H gels owing to the formation of nano-core-shell elements,thereby facilitating the formation of NCILD C-S-H and further improving the performance of the ITZ.This study provides insight into the effects of nano fillers on the ITZ in concrete at the nanoscale.展开更多
The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of t...The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results.展开更多
The determination of volume fraction of interracial transition zone (ITZ) is very important for investigating the quantitative relationship between the microstructure and macroscopical property of concrete. In this ...The determination of volume fraction of interracial transition zone (ITZ) is very important for investigating the quantitative relationship between the microstructure and macroscopical property of concrete. In this paper, based on Lu and Torquato's most nearest surface distribution function, a calculating process of volume fraction of ITZ is given in detail according to the actual sieve curve in concrete. Then, quantitative formulas are put forward to measure the influencing factors on the |TZ vol- ume fraction. In order to validate the given model, the volume fractions of ITZ obtained by numerical calculation are compared with those by computer simulation. The results show that the two are in good agreement. The order of the factors influencing the ITZ volume fraction is the ITZ thickness, the volume fraction of aggregate and the maximum aggregate diameter for Fuller gradation in turn. The 1TZ volume fraction obtained from the equal volume fraction (EVF) gradation is always larger than that from the Fuller gradation for a given volume fraction of aggregate.展开更多
Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile...Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile loads were studied using statistical results.The results indicated that the entire process of damage and failure of specimens exhibited mainly two failure types:fracture patternsⅠandⅡ.Furthermore,the influences of the aggregate content ratio,aggregate shape,aggregate size,interfacial transition zone(ITZ)strength,and porosity ratio on the concrete specimens were analyzed.The numerical simulation results showed that the elastic modulus of the concrete specimens increased approximately linearly with the aggregate volume ratio but decreased linearly with the porosity and was not affected by the ITZ strength.The tensile strength decreased with the increases in the aggregate content and porosity of the sample,but increased linearly with the ITZ strength.In addition,the aggregate shape led to a difference in the tensile strength of the concrete.展开更多
The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element metho...The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure.展开更多
Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure ...Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure evaluation, phase analysis and distribution of elements at the interface were done using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The pressure of 25 MPa was determined as the optimum pressure in which the minimum amount of plastic deformation takes place at the joint. Different reaction layers containing intermetallic compounds, such as Al12Mg17, Al3Mg2 andα(Al) solid solution, were observed, in interfacial transition zone (ITZ). Thickness of layers was increased with increasing the operating temperature. According to the results, diffusion of aluminum atoms into magnesium alloy was more and the interface movement towards the Al alloy was observed. The maximum bond strength of 38 MPa was achieved at the temperature of 440 ℃ and pressure of 25 MPa. Fractography studies indicated that the brittle fracture originated from Al3Mg2 phase.展开更多
For the purpose of providing references for further research and practical application about the quality improvement of RCA,in this paper,various treatment methods were firstly classified into four categories:removing...For the purpose of providing references for further research and practical application about the quality improvement of RCA,in this paper,various treatment methods were firstly classified into four categories:removing old mortar (OM),strengthening OM,multi-stage mixing methods,and combination methods.Thereafter,the improvement mechanisms and important conclusions of various treatment methods were elucidated and summarised respectively.In the section of discussion,the improved effects as well as advantages and disadvantages of various treatment methods were compared and discussed respectively,and recommendations for the selection of treatment methods were proposed.Finally,the further research directions were pointed out,and an integrative programme on the quality improvement of RCA was recommended.展开更多
The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are a...The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.展开更多
The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concr...The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes.展开更多
Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated car...Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.展开更多
The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical p...The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical properties of the grout-rock interface at both the macroscale and microscale.The cohesion of the cement specimens was higher than that of the grout-infilled joint specimens,while their internal friction angle was lower than that of the grout-infilled joint specimens.A“separation method”for identifying the different phases according to the qualitative and quantitative estimations was introduced,and the irregular interfacial transition zone(ITZ)thickness and elastic modulus were estimated.The ITZ thickness of the grout-infilled sandstone specimen ranged from 0 to 30μm,whereas it was within the range of 10-40μm for the grout-infilled mudstone specimen.The average elastic modulus of the ITZ in grout-infilled sandstone and mudstone specimens was approximately 58.2%and 54.1%lower than that of the bulk grout,respectively.Regarding the incidence of the rock type,the interlacing between the grout and sandstone was better developed.The ITZ with a higher porosity and lower modulus had a significant effect on the mechanical properties of the grout-infilled specimens.展开更多
By means of reducing the ratio of water to cement ( w/c ), incorporating a proper amount of fly ash and superplasticizer , and processing the surface of recycled aggregate ( RA ), this paper aims at improving the...By means of reducing the ratio of water to cement ( w/c ), incorporating a proper amount of fly ash and superplasticizer , and processing the surface of recycled aggregate ( RA ), this paper aims at improving the interfacial transition zone (ITZ) submicro- structure of the regenerated concrete ( RC ). The experimental resuits of mercury intrusion pressure (MIP) show that RA pretreated by PVA polymer solution and lyophobic active agent can jam its surface pore and hole, thus the porosity of RA is decreased. When reducing w/c ratio, incorporating 20% of fly ash ( FA ) and 2.5% of superplasticizer ( to cement ) in the RC , the width of ITZ is effectively narrowed, the structure of ITZ is combined much more compact and the compressive strength of RC is enhanced. Under the same conditions, using RA pretreated by 1% PVA polymer solution, the fluidity of fresh RC can be enhanced and the compressive strength of hardened RC can also be enhanced lightly. Whereas using RA pretreated by lyophobic active agent, the fluidity of fresh RC can be enhanced , but it impairs the adhesion of fresh cement paste and the surface of old concrete, and hinders the strength development of RC. In the ITZ structure of ordinary concrete (prepared with natural coarse and fine aggregate ), there are much Ca ( OH)2, in plank-and sheet-like, distributing with priority tropism, whereas in the RC structure, Ca( OH)2 with a coarse size is not found in ITZ ; the main reason is that the surface of coarse aggregate does not have a layer of water film.展开更多
According to the morphological characteristics of crushed stone,the sphericity was introduced to establish the theoretical calculation model of volume fraction of interfacial transition zone(ITZ)around crushed stone.T...According to the morphological characteristics of crushed stone,the sphericity was introduced to establish the theoretical calculation model of volume fraction of interfacial transition zone(ITZ)around crushed stone.The sphericity of crushed stone was obtained by image processing technology and numerical statistics.The experimental results show that when the maximum particle size of coarse aggregate is less than 31.5 mm,the practical sphericity is generally around 0.75,while the sphericity of sand is generally above 0.85.And the closer to 1 the practical sphericity is,the smaller the ITZ volume fraction(V_(ITZ))is,that is,the closer to spherical shape the aggregate is,the lower the ITZ content in concrete is.The V_(ITZ) and ITZ thickness in concrete and mortar have a linear relationship,and the ITZ content in concrete is lower than that in mortar at the same aggregate volume fraction.展开更多
基金supported by the State Major Program of National Natural Science Foundation of China(52090082)the National Key Research and Development Program of China(2022YFB2602200)the National Natural Science Foundation of China(52178423 and 52378398).
文摘The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To address this issue,novel sulfate transport and mesoscale splitting tests were designed,with a focus on considering the differences between the interfacial transition zone(ITZ)and cement matrix.Under the influence of stray current,the ITZ played a pivotal role in regulating the transport and mechanical failure processes of sulfate attack,while the tortuous and blocking effects of aggregates almost disappeared.This phenomenon was termed the“stray current-induced ITZ effect.”The experimental data revealed that the difference in sulfate ion transport attributed to the ITZ ranged from 1.90 to 2.31 times,while the difference in splitting strength ranged from 1.56 to 1.64 times.Through the real-time synchronization of splitting experiments and microsecond-responsive particle image velocimetry(PIV)technology,the mechanical properties were exposed to the consequences of the stray currentinduced ITZ effect.The number of splitting cracks in the concrete increased,rather than along the central axis,which was significantly different from the conditions without stray current and the ideal Brazilian disk test.Furthermore,a sulfate ion mass transfer model that incorporates reactivity and electrodiffusion was meticulously constructed.The embedded finite element calculation exhibited excellent agreement with the experimental results,indicating its reliability and accuracy.Additionally,the stress field was determined utilizing analytical methods,and the mechanism underlying crack propagation was successfully obtained.Compared to the cement matrix,a stray current led to more sulfates,more microstructure degradation,and greater increases in thickness and porosity in the ITZ,which was considered to be the essence of the stray current-induced ITZ effect.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623100)the National Natural Science Foundation of China(No.51378391)
文摘In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifted mortar were measured by image analysis method. The relationship between the air void size distribution and strength of mortar was studied by methods of grey connection analysis and multiple linear regression analysis. The multiple linear regression equation was established with a correlation coefficient of 0.966. The weight of the affection of hierarchical porosity on the compressive strength ratio was also obtained. In addition, the effect of air voids on the paste-aggregate interfacial transition zone (ITZ) was analyzed by microhardness. The results show that the correlation between different pore size range and the compressive strength is negative. The effect of air void size distribution on 28 days compressive strength is different: under the condition of similar total porosity, with the increase of the porosity of the air void size, ranging from 10 to 200 mu m, and the decrease of the porosity, ranging from 200 to 1 600 mu m, the average air void diameter and mean free spacing are decreased; as well as the width of ITZ. On the contrary, the microhardness of the ITZ is increased while the compressive strength loss is decreased.
基金Funded by the National Basic Research Program of China (No.2009CB623203)National High-tech R&D Program of China (No.2008AA030794)Postgraduates Research Innovation in University of Jiangsu Province in China (No.CX10B-064Z)
文摘Based on the nearest surface function formula, a quantitative formula to measure the overlapping degree between the interfacial transition zone (ITZ) of neighboring aggregate particles was put forward. The formula was further deduced to quantitatively analyze the influence of the volume fraction of aggregate, ITZ thickness and the maximum aggregate diameter on the overlapping degree between neighboring ITZ. The volume of ITZ was quantitatively calculated in actual concrete by comparing the nearest surface function formula with an approximate method, that is the surface area of the aggregates multiplied by the uniform thickness of the ITZ layers. The results showed that the influencing order of these three factors on the overlapping degree between neighboring ITZ in turn was the interface thickness, aggregate volume fraction and the maximum aggregate diameter; As long as the interface thickness 50 μm and the aggregate volume fraction 50%, the calculated error between two methods mentioned above is about 10 %.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC)Lakehead University for their financial support。
文摘The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.
基金Funded by the National Natural Science Foundation of China(No.51178105)the Major State Basic Research Development Program of China(973 Program)(No.2015CB655104)the Collaborative Innovation Centre for Advanced Civil Engineering Materials
文摘Backscattered electron images(BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone(ITZ) in concrete. Influences of aggregate size(5, 10, 20, and 30 mm), water to cement ratio(0.23, 0.35 and 0.53) and curing time(from 3d to 90d) on the microstructure of interfacial transition zone between coarse aggregate and bulk cement matrix were investigated. The volume percentage of detectable porosity and unhydrated cement in ITZ was quantitatively analyzed and compared with that in the matrix of various concretes. Nanoindentation technology was applied to obtain the elastic properties of ITZ and matrix, and the elastic modulus of concrete was then calculated based on the Lu & Torquato model and self-consistence scheme by using the ITZ thickness and elastic modulus obtained from this investigation. The experimental results demonstrated that the microstructure and thickness of ITZ in concrete vary with a variety of factors, like aggregate size, water to cement ratio and curing time. The relative low elastic properties of ITZ should be paid attention to, especially for early age concrete.
基金Funded by the National Natural Science Foundation of China(Nos.51602198,41427802 and 41302257)the Zhejiang Provincial Natural Science Foundation of China(No.LQ13D020001)the Shaoxing University Scientific Research Project(No.20145030)
文摘The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were investigated from the nano-scale structure perspective. The experimental results indicate that, with the increase of RHA dosages of samples, the volume fraction of high-density calcium-silicate-hydrate(HD C-S-H) in porosity and hydration product phases increases. The volume fractions of HD C-S-H in C-S-H of samples show an increasing trend with the increase of RHA dosages. RHA decreases the thickness of ITZ and increases the matrix elastic moduli of samples, however, the RHA dosoges hardly affect the thickness and elastic moduli.
基金Funded by the National Natural Science Foundation of China (Nos.U21A20149, 51878003, 51908378)Research Reserve of Anhui Jianzhu University (No.2022XMK01)Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No. 2022AH010017)。
文摘This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.
基金funding offered by the National Natural Science Foundation of China(51978127 and 51908103)the Fundamental Research Funds for the Central Universities(DUT21RC(3)039)。
文摘This study investigates the effects of nanofillers on the interfacial transition zone(ITZ)between aggregate and cement paste by using nanoindentation and statistical nanoindentation techniques.Moreover,the underlying mechanisms are revealed through micromechanical modeling.The nanoindentation results indicate that incorporating nanofillers increases the degree of hydration in the ITZ,reduces the content of micropores and low-density calcium silicate hydrate(LD C-S-H),and increases the content of highdensity C-S-H(HD C-S-H)and ultra high-density C-S-H(UHD C-S-H).In particular,a new phase,namely nano-core-induced low-density C-S-H(NCILD C-S-H),with a superior hardness of 2.50 GPa and an indentation modulus similar to those of HD C-S-H or UHD C-S-H was identified in this study.The modeling results revealed that the presence of nanofillers increased the packing density of LD CS-H and significantly enhanced the interaction(adhesion and friction)among the basic building blocks of C-S-H gels owing to the formation of nano-core-shell elements,thereby facilitating the formation of NCILD C-S-H and further improving the performance of the ITZ.This study provides insight into the effects of nano fillers on the ITZ in concrete at the nanoscale.
基金financially supported by the Fundamental Research Funds for the Central Universities(DUT20JC50,DUT17RC(3)006)the National Natural Science Foundation of China(51508137)the Research Center of Civil Aviation Airport Safety and Operation Engineering Technology(KFKT2021-01)。
文摘The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2009CB623200)the National High-Tech Research and Development Program of China ("863" Project)(Grant No. 2008AA030794)
文摘The determination of volume fraction of interracial transition zone (ITZ) is very important for investigating the quantitative relationship between the microstructure and macroscopical property of concrete. In this paper, based on Lu and Torquato's most nearest surface distribution function, a calculating process of volume fraction of ITZ is given in detail according to the actual sieve curve in concrete. Then, quantitative formulas are put forward to measure the influencing factors on the |TZ vol- ume fraction. In order to validate the given model, the volume fractions of ITZ obtained by numerical calculation are compared with those by computer simulation. The results show that the two are in good agreement. The order of the factors influencing the ITZ volume fraction is the ITZ thickness, the volume fraction of aggregate and the maximum aggregate diameter for Fuller gradation in turn. The 1TZ volume fraction obtained from the equal volume fraction (EVF) gradation is always larger than that from the Fuller gradation for a given volume fraction of aggregate.
基金Funded by the National Natural Science Foundation of China(No.51878113)。
文摘Monte Carlo simulations were carried out to generate a mesoscale model of concrete with randomly packed aggregates with different shapes and sizes.The mechanical properties of concrete specimens under uniaxial tensile loads were studied using statistical results.The results indicated that the entire process of damage and failure of specimens exhibited mainly two failure types:fracture patternsⅠandⅡ.Furthermore,the influences of the aggregate content ratio,aggregate shape,aggregate size,interfacial transition zone(ITZ)strength,and porosity ratio on the concrete specimens were analyzed.The numerical simulation results showed that the elastic modulus of the concrete specimens increased approximately linearly with the aggregate volume ratio but decreased linearly with the porosity and was not affected by the ITZ strength.The tensile strength decreased with the increases in the aggregate content and porosity of the sample,but increased linearly with the ITZ strength.In addition,the aggregate shape led to a difference in the tensile strength of the concrete.
基金funded by the Research Project Supported by Shanxi Scholarship Council of China(2022-067)the Opening Project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(KFJJ22-14M).
文摘The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure.
文摘Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure evaluation, phase analysis and distribution of elements at the interface were done using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The pressure of 25 MPa was determined as the optimum pressure in which the minimum amount of plastic deformation takes place at the joint. Different reaction layers containing intermetallic compounds, such as Al12Mg17, Al3Mg2 andα(Al) solid solution, were observed, in interfacial transition zone (ITZ). Thickness of layers was increased with increasing the operating temperature. According to the results, diffusion of aluminum atoms into magnesium alloy was more and the interface movement towards the Al alloy was observed. The maximum bond strength of 38 MPa was achieved at the temperature of 440 ℃ and pressure of 25 MPa. Fractography studies indicated that the brittle fracture originated from Al3Mg2 phase.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)National Science Foundation for Distinguished Young Scholars(No.51608179)the Key Science and Technology Program of Henan Province,China(No.202102310253)。
文摘For the purpose of providing references for further research and practical application about the quality improvement of RCA,in this paper,various treatment methods were firstly classified into four categories:removing old mortar (OM),strengthening OM,multi-stage mixing methods,and combination methods.Thereafter,the improvement mechanisms and important conclusions of various treatment methods were elucidated and summarised respectively.In the section of discussion,the improved effects as well as advantages and disadvantages of various treatment methods were compared and discussed respectively,and recommendations for the selection of treatment methods were proposed.Finally,the further research directions were pointed out,and an integrative programme on the quality improvement of RCA was recommended.
基金Funded by the Fundamental Research Funds for the Central Universities(WUT:142201001)
文摘The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.
基金Funded by the National Natural Science Foundation of China(Nos.51278073,51678081,51678143)State Key Laboratory for Geo-mechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1704)
文摘The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes.
基金Funded by Joint Funds of the National Natural Science Foundation of China (No.U1904188)Key R&D and Promotion Projects in Henan Province,China (No.212102310288)the Key Science and Technology Program of Henan Province,China (No.202102310253)。
文摘Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.
基金Project(52004144)supported by the National Natural Science Foundation of ChinaProject supported by the Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team,China。
文摘The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical properties of the grout-rock interface at both the macroscale and microscale.The cohesion of the cement specimens was higher than that of the grout-infilled joint specimens,while their internal friction angle was lower than that of the grout-infilled joint specimens.A“separation method”for identifying the different phases according to the qualitative and quantitative estimations was introduced,and the irregular interfacial transition zone(ITZ)thickness and elastic modulus were estimated.The ITZ thickness of the grout-infilled sandstone specimen ranged from 0 to 30μm,whereas it was within the range of 10-40μm for the grout-infilled mudstone specimen.The average elastic modulus of the ITZ in grout-infilled sandstone and mudstone specimens was approximately 58.2%and 54.1%lower than that of the bulk grout,respectively.Regarding the incidence of the rock type,the interlacing between the grout and sandstone was better developed.The ITZ with a higher porosity and lower modulus had a significant effect on the mechanical properties of the grout-infilled specimens.
文摘By means of reducing the ratio of water to cement ( w/c ), incorporating a proper amount of fly ash and superplasticizer , and processing the surface of recycled aggregate ( RA ), this paper aims at improving the interfacial transition zone (ITZ) submicro- structure of the regenerated concrete ( RC ). The experimental resuits of mercury intrusion pressure (MIP) show that RA pretreated by PVA polymer solution and lyophobic active agent can jam its surface pore and hole, thus the porosity of RA is decreased. When reducing w/c ratio, incorporating 20% of fly ash ( FA ) and 2.5% of superplasticizer ( to cement ) in the RC , the width of ITZ is effectively narrowed, the structure of ITZ is combined much more compact and the compressive strength of RC is enhanced. Under the same conditions, using RA pretreated by 1% PVA polymer solution, the fluidity of fresh RC can be enhanced and the compressive strength of hardened RC can also be enhanced lightly. Whereas using RA pretreated by lyophobic active agent, the fluidity of fresh RC can be enhanced , but it impairs the adhesion of fresh cement paste and the surface of old concrete, and hinders the strength development of RC. In the ITZ structure of ordinary concrete (prepared with natural coarse and fine aggregate ), there are much Ca ( OH)2, in plank-and sheet-like, distributing with priority tropism, whereas in the RC structure, Ca( OH)2 with a coarse size is not found in ITZ ; the main reason is that the surface of coarse aggregate does not have a layer of water film.
基金Funded by the National Natural Science Foundations of China(No.52178237)the Graduate Innovation Fund of Shijiazhuang Tie Dao University(YC2021064)。
文摘According to the morphological characteristics of crushed stone,the sphericity was introduced to establish the theoretical calculation model of volume fraction of interfacial transition zone(ITZ)around crushed stone.The sphericity of crushed stone was obtained by image processing technology and numerical statistics.The experimental results show that when the maximum particle size of coarse aggregate is less than 31.5 mm,the practical sphericity is generally around 0.75,while the sphericity of sand is generally above 0.85.And the closer to 1 the practical sphericity is,the smaller the ITZ volume fraction(V_(ITZ))is,that is,the closer to spherical shape the aggregate is,the lower the ITZ content in concrete is.The V_(ITZ) and ITZ thickness in concrete and mortar have a linear relationship,and the ITZ content in concrete is lower than that in mortar at the same aggregate volume fraction.