期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review 被引量:1
1
作者 Brett Holmberg Liang Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1474-1489,共16页
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou... The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology. 展开更多
关键词 cemented paste backfill cementitious composites interfacial transition zone fiber reinforcement MULTIPHYSICS induced curing pressure
下载PDF
Influence Mechanism of Curing Regimes on Interfacial Transition Zone of Lightweight Ultra-High Performance Concrete
2
作者 李洋 张高展 +3 位作者 YANG Jun ZHANG Jian DING Qingjun ZHAO Mingyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期591-603,共13页
This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC... This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser. 展开更多
关键词 curing regime ultra-high performance concrete lightweight aggregate interfacial transition zone meso-mechanical properties micro-mechanical properties
下载PDF
Effect of the Entrained Air Void on Strength and Interfacial Transition Zone of Air-Entrained Mortar 被引量:8
3
作者 高辉 ZHANG Xiong ZHANG Yongjuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期1020-1028,共9页
In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifte... In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifted mortar were measured by image analysis method. The relationship between the air void size distribution and strength of mortar was studied by methods of grey connection analysis and multiple linear regression analysis. The multiple linear regression equation was established with a correlation coefficient of 0.966. The weight of the affection of hierarchical porosity on the compressive strength ratio was also obtained. In addition, the effect of air voids on the paste-aggregate interfacial transition zone (ITZ) was analyzed by microhardness. The results show that the correlation between different pore size range and the compressive strength is negative. The effect of air void size distribution on 28 days compressive strength is different: under the condition of similar total porosity, with the increase of the porosity of the air void size, ranging from 10 to 200 mu m, and the decrease of the porosity, ranging from 200 to 1 600 mu m, the average air void diameter and mean free spacing are decreased; as well as the width of ITZ. On the contrary, the microhardness of the ITZ is increased while the compressive strength loss is decreased. 展开更多
关键词 air void structure compressive strength interfacial transition zone grey connection linear regression
下载PDF
Quantitative Analysis and Affecting Factors of the Overlapping Degree of Interfacial Transition Zone between Neighboring Aggregates in Concrete 被引量:5
4
作者 孙国文 孙伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第1期147-153,共7页
Based on the nearest surface function formula, a quantitative formula to measure the overlapping degree between the interfacial transition zone (ITZ) of neighboring aggregate particles was put forward. The formula w... Based on the nearest surface function formula, a quantitative formula to measure the overlapping degree between the interfacial transition zone (ITZ) of neighboring aggregate particles was put forward. The formula was further deduced to quantitatively analyze the influence of the volume fraction of aggregate, ITZ thickness and the maximum aggregate diameter on the overlapping degree between neighboring ITZ. The volume of ITZ was quantitatively calculated in actual concrete by comparing the nearest surface function formula with an approximate method, that is the surface area of the aggregates multiplied by the uniform thickness of the ITZ layers. The results showed that the influencing order of these three factors on the overlapping degree between neighboring ITZ in turn was the interface thickness, aggregate volume fraction and the maximum aggregate diameter; As long as the interface thickness 50 μm and the aggregate volume fraction 50%, the calculated error between two methods mentioned above is about 10 %. 展开更多
关键词 CONCRETE interfacial transition zone degree of overlapping volume fraction Fuller distribution
下载PDF
Quantitative Characterization and Elastic Properties of Interfacial Transition Zone around Coarse Aggregate in Concrete 被引量:2
5
作者 贾子健 HAN Yunge +3 位作者 张亚梅 QIU Chen HU Chuanlin LI Zongjin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期838-844,共7页
Backscattered electron images(BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone(ITZ) in concrete. Influences of aggregate size... Backscattered electron images(BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone(ITZ) in concrete. Influences of aggregate size(5, 10, 20, and 30 mm), water to cement ratio(0.23, 0.35 and 0.53) and curing time(from 3d to 90d) on the microstructure of interfacial transition zone between coarse aggregate and bulk cement matrix were investigated. The volume percentage of detectable porosity and unhydrated cement in ITZ was quantitatively analyzed and compared with that in the matrix of various concretes. Nanoindentation technology was applied to obtain the elastic properties of ITZ and matrix, and the elastic modulus of concrete was then calculated based on the Lu & Torquato model and self-consistence scheme by using the ITZ thickness and elastic modulus obtained from this investigation. The experimental results demonstrated that the microstructure and thickness of ITZ in concrete vary with a variety of factors, like aggregate size, water to cement ratio and curing time. The relative low elastic properties of ITZ should be paid attention to, especially for early age concrete. 展开更多
关键词 concrete interfacial transition zone backscattered electron image nanoindentation elastic modulus
下载PDF
Nanoindentation Characteristics of Cement Paste and Interfacial Transition Zone in Mortar with Rice Husk Ash 被引量:1
6
作者 何智海 QIAN Chunxiang +2 位作者 杜时贵 HUANG Man XIA Menglu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期417-421,共5页
The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were in... The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were investigated from the nano-scale structure perspective. The experimental results indicate that, with the increase of RHA dosages of samples, the volume fraction of high-density calcium-silicate-hydrate(HD C-S-H) in porosity and hydration product phases increases. The volume fractions of HD C-S-H in C-S-H of samples show an increasing trend with the increase of RHA dosages. RHA decreases the thickness of ITZ and increases the matrix elastic moduli of samples, however, the RHA dosoges hardly affect the thickness and elastic moduli. 展开更多
关键词 nanoindentation rice husk ash cementitious material interfacial transition zone elastic modulus calcium-silicate-hydrate(C-S-H)
下载PDF
Nanomechanical Characteristics of Interfacial Transition Zone in Nano-Engineered Concrete
7
作者 Xinyue Wang Sufen Dong +2 位作者 Zhenming Li Baoguo Han Jinping Ou 《Engineering》 SCIE EI CAS 2022年第10期99-109,共11页
This study investigates the effects of nanofillers on the interfacial transition zone(ITZ)between aggregate and cement paste by using nanoindentation and statistical nanoindentation techniques.Moreover,the underlying ... This study investigates the effects of nanofillers on the interfacial transition zone(ITZ)between aggregate and cement paste by using nanoindentation and statistical nanoindentation techniques.Moreover,the underlying mechanisms are revealed through micromechanical modeling.The nanoindentation results indicate that incorporating nanofillers increases the degree of hydration in the ITZ,reduces the content of micropores and low-density calcium silicate hydrate(LD C-S-H),and increases the content of highdensity C-S-H(HD C-S-H)and ultra high-density C-S-H(UHD C-S-H).In particular,a new phase,namely nano-core-induced low-density C-S-H(NCILD C-S-H),with a superior hardness of 2.50 GPa and an indentation modulus similar to those of HD C-S-H or UHD C-S-H was identified in this study.The modeling results revealed that the presence of nanofillers increased the packing density of LD CS-H and significantly enhanced the interaction(adhesion and friction)among the basic building blocks of C-S-H gels owing to the formation of nano-core-shell elements,thereby facilitating the formation of NCILD C-S-H and further improving the performance of the ITZ.This study provides insight into the effects of nano fillers on the ITZ in concrete at the nanoscale. 展开更多
关键词 CONCRETE NANOFILLER interfacial transition zone NANOINDENTATION Micromechanical modeling Nano-core effect
下载PDF
Study of interfacial transition zones between magnesium phosphate cement and Portland cement concrete pavement
8
作者 Fei Liu Baofeng Pan +3 位作者 Changjun Zhou Ge Li Xiaocun Wang Jiaquan Li 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2024年第3期523-537,共15页
The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of t... The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results. 展开更多
关键词 Portland cement concrete pavement interfacial transition zone Magnesium phosphate cement Repair interface NANOINDENTATION Mechanical properties and characteristics
原文传递
Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ
9
作者 Weiliang Gao Shixu Jia +1 位作者 Tingting Zhao Zhiyong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3495-3511,共17页
The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element metho... The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure. 展开更多
关键词 Discrete element method damage evolution interfacial transition zone meso-structure model
下载PDF
Quality Improvement of Recycled Concrete Aggregate by Accelerated Carbonation under Different Pressure
10
作者 丁亚红 武军 +3 位作者 ZHANG Xianggang XU Ping NING Wei LI Yajing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期623-631,共9页
Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated car... Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation. 展开更多
关键词 recycled concrete aggregate treatment method accelerated carbonation interfacial transition zone saturated lime water CALCITE
下载PDF
Treatment Methods for the Quality Improvement of Recycled Concrete Aggregate (RCA)–A Review 被引量:5
11
作者 丁亚红 WU Jun +2 位作者 徐平 ZHANG Xianggang FAN Yuhui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第1期77-92,共16页
For the purpose of providing references for further research and practical application about the quality improvement of RCA,in this paper,various treatment methods were firstly classified into four categories:removing... For the purpose of providing references for further research and practical application about the quality improvement of RCA,in this paper,various treatment methods were firstly classified into four categories:removing old mortar (OM),strengthening OM,multi-stage mixing methods,and combination methods.Thereafter,the improvement mechanisms and important conclusions of various treatment methods were elucidated and summarised respectively.In the section of discussion,the improved effects as well as advantages and disadvantages of various treatment methods were compared and discussed respectively,and recommendations for the selection of treatment methods were proposed.Finally,the further research directions were pointed out,and an integrative programme on the quality improvement of RCA was recommended. 展开更多
关键词 RCA treatment methods removing OM strengthening OM interfacial transition zone(ITZ)
下载PDF
Mechanical Properties and Microstructure of Portland Cement Concrete Prepared with Coral Reef Sand 被引量:21
12
作者 王乾坤 LI Peng +2 位作者 田亚坡 CHEN Wei SU Chunyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期996-1001,共6页
The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are a... The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm. 展开更多
关键词 coral reef sand concrete mechanical properties microstructure interfacial transition zone
下载PDF
Mechanical Properties and ITZ Microstructure of Recycled Aggregate Concrete Using Carbonated Recycled Coarse Aggregate 被引量:6
13
作者 伍君勇 张云升 +2 位作者 ZHU Pinghua FENG Jincai 胡坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期648-653,共6页
The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concr... The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes. 展开更多
关键词 recycled aggregate concrete compressive strength interfacial transition zone carbonation treatment two-stage mixing approach back scattered electron
下载PDF
Modificatin of ITZ Structure and Properties of Regenerated Concrete 被引量:1
14
作者 万惠文 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第2期128-132,共5页
By means of reducing the ratio of water to cement ( w/c ), incorporating a proper amount of fly ash and superplasticizer , and processing the surface of recycled aggregate ( RA ), this paper aims at improving the... By means of reducing the ratio of water to cement ( w/c ), incorporating a proper amount of fly ash and superplasticizer , and processing the surface of recycled aggregate ( RA ), this paper aims at improving the interfacial transition zone (ITZ) submicro- structure of the regenerated concrete ( RC ). The experimental resuits of mercury intrusion pressure (MIP) show that RA pretreated by PVA polymer solution and lyophobic active agent can jam its surface pore and hole, thus the porosity of RA is decreased. When reducing w/c ratio, incorporating 20% of fly ash ( FA ) and 2.5% of superplasticizer ( to cement ) in the RC , the width of ITZ is effectively narrowed, the structure of ITZ is combined much more compact and the compressive strength of RC is enhanced. Under the same conditions, using RA pretreated by 1% PVA polymer solution, the fluidity of fresh RC can be enhanced and the compressive strength of hardened RC can also be enhanced lightly. Whereas using RA pretreated by lyophobic active agent, the fluidity of fresh RC can be enhanced , but it impairs the adhesion of fresh cement paste and the surface of old concrete, and hinders the strength development of RC. In the ITZ structure of ordinary concrete (prepared with natural coarse and fine aggregate ), there are much Ca ( OH)2, in plank-and sheet-like, distributing with priority tropism, whereas in the RC structure, Ca( OH)2 with a coarse size is not found in ITZ ; the main reason is that the surface of coarse aggregate does not have a layer of water film. 展开更多
关键词 regenerated concrete interfacial transition zone ITZ structure and property
下载PDF
Theoretical Calculation of ITZ Volume Fraction and Morphological Characterization of Crushed Stone in Concrete
15
作者 张建建 PENG Liang +2 位作者 ZHANG Guoqiang 孙国文 LIU Zhiyong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期656-665,共10页
According to the morphological characteristics of crushed stone,the sphericity was introduced to establish the theoretical calculation model of volume fraction of interfacial transition zone(ITZ)around crushed stone.T... According to the morphological characteristics of crushed stone,the sphericity was introduced to establish the theoretical calculation model of volume fraction of interfacial transition zone(ITZ)around crushed stone.The sphericity of crushed stone was obtained by image processing technology and numerical statistics.The experimental results show that when the maximum particle size of coarse aggregate is less than 31.5 mm,the practical sphericity is generally around 0.75,while the sphericity of sand is generally above 0.85.And the closer to 1 the practical sphericity is,the smaller the ITZ volume fraction(V_(ITZ))is,that is,the closer to spherical shape the aggregate is,the lower the ITZ content in concrete is.The V_(ITZ) and ITZ thickness in concrete and mortar have a linear relationship,and the ITZ content in concrete is lower than that in mortar at the same aggregate volume fraction. 展开更多
关键词 crushed stone SPHERICITY interfacial transition zone image processing CONCRETE
下载PDF
Properties and Microstructures of Full Graded Concrete Containing Varied Impurity Aggregate
16
作者 杨梦卉 何真 LIN Yuqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期321-329,共9页
We investigated mechanical properties of concretes made with impurity aggregates of different combinations. Besides the mechanisms were explored by EDS, CT, and hardness testing. The results showed that fully rust-sta... We investigated mechanical properties of concretes made with impurity aggregates of different combinations. Besides the mechanisms were explored by EDS, CT, and hardness testing. The results showed that fully rust-stained and surface rust-stained sandstone aggregate had significant adverse impact on the compressive strength of concrete while sandstone aggregate had a much more obvious impact on the ultimate tension of concrete. Concrete crack was more prone to expand along surfaces and the micro-hardness of interfacial transition zone of different aggregates was ranked in decreasing trend as sandstone, slate, SR sandstone, marble, and FR sandstone. The cluster growth of long needle-like ettringite crystal and strong preferential growth trend of Ca(OH)2 crystals would result in wider interfacial transition zone range of concretes made with fully rust-stained sandstone and marble aggregate, respectively. Therefore, the impurity aggregate content should be strictly controlled during aggregate selection. 展开更多
关键词 aggregate concrete mechanical property interfacial transition zone
下载PDF
Interaction between matrix crack and circular capsule under uniaxial tension in encapsulation-based self-healing concrete 被引量:2
17
作者 Luthfi Muhammad Mauludin Chahmi Oucif 《Underground Space》 SCIE EI 2018年第3期181-189,共9页
This paper investigates the fracture process of a capsule when subjected to uniaxial tension in encapsulation-based self-healing concrete.A circular capsule embedded in the mortar matrix is considered along with diffe... This paper investigates the fracture process of a capsule when subjected to uniaxial tension in encapsulation-based self-healing concrete.A circular capsule embedded in the mortar matrix is considered along with different ratios of core-shell thickness.To represent potential cracks,zero thickness cohesive elements are pre-inserted throughout element boundaries.The effects of fracture strength around the interfacial transition zone of the capsule are analyzed.The crack nucleation,propagation,and fracture mode of capsule are also discussed.The numerical results indicate that increasing the strength of the interfacial transition zone around the capsule can increase the load-carrying capacity of self-healing concrete.Moreover,given a similar fracture strength around the interface of the capsule,the fracture probability of capsule in encapsulation-based self-healing concrete is strongly dependent on the core-shell thickness ratio.. 展开更多
关键词 FRACTURE Cohesive elements CAPSULE interfacial transition zone Thickness
原文传递
The ITZ microstructure,thickness,porosity and its relation with compressive and flexural strength of cement mortar;influence of cement fineness and water/cement ratio 被引量:1
18
作者 Tahereh KOROUZHDEH Hamid ESKANDARI-NADDAF Ramin KAZEMI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第2期191-201,共11页
A new insight into the interfacial transition zone(ITZ)in cement mortar specimens(CMSs)that is influenced by cement fineness is reported.The importance of cement fineness in ITZ characterizations such as morphology an... A new insight into the interfacial transition zone(ITZ)in cement mortar specimens(CMSs)that is influenced by cement fineness is reported.The importance of cement fineness in ITZ characterizations such as morphology and thickness is elucidated by backscattered electron images and by consequences to the compressive(Fc)and flexural strength(Ff),and porosity at various water/cement ratios.The findings indicate that by increasing the cement fineness the calcium silicate hydrate formation in the ITZ is favored and that this can refine the pore structures and create a denser and more homogeneous microstructure.By increasing cement fineness by about 25%of,the ITZ thickness of CMSs was reduced by about 30%and Fc was increased by 7%–52%and Ff by 19%–40%.These findings illustrate that the influence of ITZ features on the mechanical strength of CMSs is mostly related to the cement fineness and ITZ microstructure. 展开更多
关键词 cement fineness interfacial transition zone compressive and flexural strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部