Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und...Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.展开更多
Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycl...Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycles on clay static strength, cohesion and internal friction angles is proposed, and the change patterns, correction curves and regressive formulae of clay static strength, cohesion and internal friction angles under freezing-thawing cycles are given. The test results indicate that with increasing numbers of freezing-thawing cycles, the clay static strength and cohesion decrease exponentially but the internal friction angle increases exponentially. The performance of static strength, cohesion and internal friction angles are different with increasing numbers of freezing-thawing cycles, i.e., the static strength decreases constantly until about 30% of the initial static strength prior to the freezing-thawing cycling and then stays basically stable. After 5-7 freezing-thawing cycles, the cohesion decreases gradually to about 70% of the initial cohesion. The internal friction angle increases about 20% after the first freezing-thawing cycle, then increases gradually close to a stable value which is an increase of about 40% of the internal friction angle. The freezing-thawing process can increase the variation of the density of the soil samples; therefore, strict density discreteness standards of frozen soil sample preparation should be established to ensure the reliability of the test results.展开更多
The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fract...The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fracturing process.In the present study,a Mohr-Coulomb criterion with a tensile cut-off is incorporated into the finite element code to determine the fracture initiation type and location during the hydraulic fracturing process.This fracture criterion considers the effect of fracture inclination angle,the internal friction angle and the loading conditions on the distribution of stress field around the fracture tip.The results indicate that the internal friction angle resists the shear fracture initiation.Moreover,as the internal friction angle increases,greater external loads are required to maintain the hydraulic fracture extension.Due to the increased pressure of the injected water,the tensile fracture ultimately determines the fracture initiation type.However,the shear fracture preferentially occurs as the stress anisotropy coefficient increases.Both the maximum tensile stress and equivalent maximum shear stress decrease as the stress anisotropy coefficient increases,which indicates that the greater the stress anisotropy coefficient,the higher the external loading required to propagate a new fracture.The numerical results obtained in this paper provide theoretical supports for establishing basis on investigating of the hydraulic fracturing characteristics under different conditions.展开更多
Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate...Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate- bearing sediments synthesized in laboratory, are investigated using tri-axial tests. Stress-strain curves and strength parameters are obtained and discussed for different compositions and different hydrate saturation, followed by empirical expressions related to the cohesion, internal friction angle, and modulus of MHBS. Almost all tested MHBS samples exhibit plastic failure. With the increase of total saturation of ice and methane hydrate (MH), the specimens' internal friction angle decreases while the cohesion increases.展开更多
The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conv...The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice.展开更多
Following a rice or wheat harvest, a large amount of crop residue (straw) is retained in fields. The straw is often incorporated into the soil in order to increase the soil organic carbon storage and to reduce soil ...Following a rice or wheat harvest, a large amount of crop residue (straw) is retained in fields. The straw is often incorporated into the soil in order to increase the soil organic carbon storage and to reduce soil erosion. However, it has become apparent that the incorporated straw can significantly alter soil shear properties, which can dramatically affect energy inputs for tilling and other soil management practices. In this study, laboratory-remolded wheat straw-soil samples were compared with field-collected straw-soil samples; we found high correlations for the cohesion (R2=0.9084) and internal friction angle (R2=0.9548) properties of the samples. Shear tests on rice and wheat straw with different moisture content levels clearly demonstrated the relatively higher shear strength of wheat straw compared to rice straw. The cohesion of remolded rice and wheat straw-soil samples exhibited an increasing linear trend with an increase in densities, whereas the internal friction angle data for these samples exhibited a quadratic trend. Overlapping the cohesion curves revealed that the wheat straw-soil and rice straw-soil samples had the same cohesion at a straw density of 0.63%. Similar results were obtained when the internal fraction angle curves overlapped; the resultant point of intersection was observed at a straw density of 0.46%. As a whole, the remolded sample methodology was found suitable to simulate the shear properties of soils sampled directly from fields.展开更多
In order to obtain the earth pressure coefficient at rest (K0) at higher consolidation pressures during secondary compression, a series of K0 tests for saturated reconstituted clay were conducted. The results indicate...In order to obtain the earth pressure coefficient at rest (K0) at higher consolidation pressures during secondary compression, a series of K0 tests for saturated reconstituted clay were conducted. The results indicate that the measured K0 in secondary compression can be described by equations related to internal friction angle, secondary compression coefficient, compression index, recompression index, and sediment time. Effects of consolidation pressures and sediment time on K0 during secondary compression can be attributed to cementation (part of cohesion) increase and internal friction angle decrease. Cementation increase leads to nonlinear variation for K0 and internal friction angle decrease results in increase of K0. K0 computed by equations associated with internal friction angle is overestimated at apparent lower consolidation pressures with different sediment time, which agrees with the measured values well at apparent higher consolidation pressures.展开更多
The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance...The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance of ricocheted debris must be accurately predicted.This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium.Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand.Finite element analysis(FEA)was then applied to these variables to predict the speed and angle of the debris after ricochet.The FEA results were compared with results of low-speed ricochet experiments,which employed variable temperature and water content.The travel distance of the debris was calculated using MATLAB,via trajectory equations considering the drag coefficient.As the internal friction angle decreased,the shear stress decreased,leading to deeper penetration of the debris into the sand.As the loss of kinetic energy increased,the velocity and travel distance of the ricocheted debris decreased.Changes in the ricochet velocity and travel distance of the debris,according to changes in the internal friction angle,indicated that the debris was affected by the environment.展开更多
<span style="font-family:Verdana;">This paper proposes a numerical simulation of the mechanical behavior of a reinforced concrete pile foundation under an axial load. In fact, the foundation of a struc...<span style="font-family:Verdana;">This paper proposes a numerical simulation of the mechanical behavior of a reinforced concrete pile foundation under an axial load. In fact, the foundation of a structure represents the essential structural part of it, because it ensures its bearing capacity. Among the types of foundation, </span><span style="font-family:Verdana;">deep</span><span style="font-family:Verdana;"> foundation is the one for which from a mechanical point of view, the justification takes into account the isolated or combined effects of base resistance offered by the soil bed and lateral friction at the soil-pile interface;the latter being the consequence of a large contact surface with the surrounding soil;hence the need to study the interaction between the soil and the pile in service, in order to highlight the characteristics of soil which influence the mechanical behavior of pile and therefore the stability of the structure. In this study,</span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">the reinforced concrete pile is supposed to be </span><span style="font-family:Verdana;">elastic,</span><span style="font-family:Verdana;"> and characterized by a young’s modulus (</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">) and a Poisson’s ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">ν</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). The soil obeys to a Camclay model characterized by </span><span style="font-family:Verdana;">a cohesion</span><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">c</span></i><span style="font-family:Verdana;">), an initial voids ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">e</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">), shearing resistance angle (</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">φ</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> a pre-consolidation pressure (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">P</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). A joint model with a </span><span style="font-family:Verdana;">Mohr Coulomb</span><span style="font-family:Verdana;"> behavior characterizes the soil-pile interface. The loading is carrying out by imposing a vertical monotonic displacement at the head of </span><span style="font-family:Verdana;">pile</span><span style="font-family:Verdana;">. The results in terms of stress and displacement show that the bearing capacity of the pile is influenced by various soils characteristics, it appears that the vertical stress and the force mobilized at rupture increase when the initial pre_consolidation pressure, the cohesion </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> the internal friction angle of soil increase;and when the initial soil voids index decreases.</span></span></span></span>展开更多
Based on the basic concept of Plandell's assumption,the plasticity balance principle is applied to analyze the bearing capacity of the two-layer foundation,and the formula of bearing capacity of the two-layer foun...Based on the basic concept of Plandell's assumption,the plasticity balance principle is applied to analyze the bearing capacity of the two-layer foundation,and the formula of bearing capacity of the two-layer foundation is obtained.The variation of bearing capacity of the foundation under different soil conditions is analyzed,and different calculation parameters are obtained.The effect on the ultimate bearing capacity of the two-layer foundation.The study found that:(1)For homogeneous soils,the formula obtained in this paper is the same as the Plandell formula;(2)the cohesive force of the soil,the soil bulk density above the foundation,and the aspect ratio have less influence on the bearing capacity of the foundation than the internal friction angle.Much;(3)The upper and lower layers of different strength ratios have different critical depths and increase with the increase of the relative strength of the upper layers.(4)This paper assumes that the foundation is completely smooth and ignores the influence of the bulk density of the foundation soil,which is not consistent with sand.展开更多
The changes in the mechanical properties of collapsing walls under the influence of natural factors in the hilly area of southern China need to be determined.We systematically studied the influence of the interaction ...The changes in the mechanical properties of collapsing walls under the influence of natural factors in the hilly area of southern China need to be determined.We systematically studied the influence of the interaction of dry densityρ(1.0,1.1,1.2,1.3,1.4 g/cm3)and moisture content w(0.05,0.1,0.15,0.2,0.25 g/g)on the stability of four soil layers in a collapsing wall.The soil cohesion decreased with increasing soil depth.The cohesion force initially increased and then decreased with increasingωand increased with increasingρ;the internal friction angle was mainly affected byωand decreased with increasingω.The cohesion could be used to effectively characterize the stability of the collapsing wall.The shear strength index was modeled based on interaction between the dry density and moisture content(R2>0.95).The optimal combination of moisture content and dry density was obtained,and the collapsing wall was in the most stable state at a moisture content of 0.12-0.19 g/g and a dry density of 1.40 g/cm3.Based on the analysis of the critical height and safety factor(FS),the FS values of the sandy layer(C)was 0.53 and 0.57 forωvalues of 0.25 g/g and 0.05 g/g,respectively.In the alternating process of soil wetting and drying,the basic properties of the soil changed;caused traceback erosion,and thereby affected the stability of the collapsing wall.Our study provides a theoretical basis for the investigation of the factors influencing the stability of collapsing walls.展开更多
The aim of this study was to determine the structural designing parameters of silo and bins used for storage of some hybrid corn varieties(Zea mays L.).In the research,three corn varieties-dentcorn(Zea mays indentata ...The aim of this study was to determine the structural designing parameters of silo and bins used for storage of some hybrid corn varieties(Zea mays L.).In the research,three corn varieties-dentcorn(Zea mays indentata Sturt.),popcorn(Zea mays everta Sturt.),sweetcorn(Zea mays sacharata Sturt.)-widespread cultivated in Turkey were used.Physico-mechanical parameters(bulk density,true density,angle of internal friction,static coefficient of friction)were considered as the dependent variables,and moisture content(8%,10%,12%,and 14%)as the independent variable.The bulk density,true density and angle of internal friction varied from 608.46 to 856.46 kg/m^(3),950.88 to 1110.89 kg/m^(3),and 25.2°to 34.2°,respectively,with the increase in moisture content from 8% to 14%.According to results of the research,the highest average value for bulk density,true density,angle of internal friction were found in popcorn variety(839.17 kg/m^(3)),popcorn variety(1074.40 kg/m^(3)),sweetcorn variety(30.50°),respectively.The highest average value for static coefficient of friction at concrete surface(C30)was recorded in dentcorn variety(0.662).展开更多
In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single partic...In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical methods such as the Hausner ratio and the Cart index, This was confirmed by bulk measurements of the particle-particle internal friction parameter and flow function using a Schulze shear cell, which also illustrated the low compressibility of the material. Single particle compression was used to characterize single particle mechanical properties such as reduced elastic modulus and strength from Hertz contact mechanics theory. Comparison with surface properties obtained from nanoindentation suggests heterogeneity, the surface being harder than the core. In order to evaluate the relationship between single particle mechanical properties and bulk compression behaviour, uniaxial confined compression was carried out. It was determined that the Adams model was suitable for describing the bulk compression and furthermore that the Adams model parameter, apparent strength of single particles, was in good agreement with the single particle strength determined from single particle compression test.展开更多
基金the financial support from the National Natural Science Foundation of China(Grant Nos.51839003 and 42207221).
文摘Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2018D12National Natural Science Foundation of Heilongjiang Province under Grant No.E 2016045+1 种基金National Natural Science Foundation of China under Grant No.5137816451508140
文摘Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycles on clay static strength, cohesion and internal friction angles is proposed, and the change patterns, correction curves and regressive formulae of clay static strength, cohesion and internal friction angles under freezing-thawing cycles are given. The test results indicate that with increasing numbers of freezing-thawing cycles, the clay static strength and cohesion decrease exponentially but the internal friction angle increases exponentially. The performance of static strength, cohesion and internal friction angles are different with increasing numbers of freezing-thawing cycles, i.e., the static strength decreases constantly until about 30% of the initial static strength prior to the freezing-thawing cycling and then stays basically stable. After 5-7 freezing-thawing cycles, the cohesion decreases gradually to about 70% of the initial cohesion. The internal friction angle increases about 20% after the first freezing-thawing cycle, then increases gradually close to a stable value which is an increase of about 40% of the internal friction angle. The freezing-thawing process can increase the variation of the density of the soil samples; therefore, strict density discreteness standards of frozen soil sample preparation should be established to ensure the reliability of the test results.
基金Project(2017YFC1503102)supported by the National Key Research and Development ProgramProjects(51874065,U1903112)supported by the National Natural Science Foundation of China。
文摘The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fracturing process.In the present study,a Mohr-Coulomb criterion with a tensile cut-off is incorporated into the finite element code to determine the fracture initiation type and location during the hydraulic fracturing process.This fracture criterion considers the effect of fracture inclination angle,the internal friction angle and the loading conditions on the distribution of stress field around the fracture tip.The results indicate that the internal friction angle resists the shear fracture initiation.Moreover,as the internal friction angle increases,greater external loads are required to maintain the hydraulic fracture extension.Due to the increased pressure of the injected water,the tensile fracture ultimately determines the fracture initiation type.However,the shear fracture preferentially occurs as the stress anisotropy coefficient increases.Both the maximum tensile stress and equivalent maximum shear stress decrease as the stress anisotropy coefficient increases,which indicates that the greater the stress anisotropy coefficient,the higher the external loading required to propagate a new fracture.The numerical results obtained in this paper provide theoretical supports for establishing basis on investigating of the hydraulic fracturing characteristics under different conditions.
基金supported by the National Natural Science Foundation of China (11102209 and 11072245)the National High Technology Research and Development Program of China (863)the Key Program of Chinese Academy of Sciences (KJCX2-YW-L02)
文摘Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate- bearing sediments synthesized in laboratory, are investigated using tri-axial tests. Stress-strain curves and strength parameters are obtained and discussed for different compositions and different hydrate saturation, followed by empirical expressions related to the cohesion, internal friction angle, and modulus of MHBS. Almost all tested MHBS samples exhibit plastic failure. With the increase of total saturation of ice and methane hydrate (MH), the specimens' internal friction angle decreases while the cohesion increases.
基金the National Outstanding Youth Science Fund Project of the National Natural Science Foundation of China(Grant No.52022112)the Hunan Provincial Innovation Foundation for Postgraduate of China(Grant No.2020zzts152)are acknowledged.
文摘The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice.
基金financially supported by the National Natural Science Foundation of China (51275250)
文摘Following a rice or wheat harvest, a large amount of crop residue (straw) is retained in fields. The straw is often incorporated into the soil in order to increase the soil organic carbon storage and to reduce soil erosion. However, it has become apparent that the incorporated straw can significantly alter soil shear properties, which can dramatically affect energy inputs for tilling and other soil management practices. In this study, laboratory-remolded wheat straw-soil samples were compared with field-collected straw-soil samples; we found high correlations for the cohesion (R2=0.9084) and internal friction angle (R2=0.9548) properties of the samples. Shear tests on rice and wheat straw with different moisture content levels clearly demonstrated the relatively higher shear strength of wheat straw compared to rice straw. The cohesion of remolded rice and wheat straw-soil samples exhibited an increasing linear trend with an increase in densities, whereas the internal friction angle data for these samples exhibited a quadratic trend. Overlapping the cohesion curves revealed that the wheat straw-soil and rice straw-soil samples had the same cohesion at a straw density of 0.63%. Similar results were obtained when the internal fraction angle curves overlapped; the resultant point of intersection was observed at a straw density of 0.46%. As a whole, the remolded sample methodology was found suitable to simulate the shear properties of soils sampled directly from fields.
基金Projects(50534040, 50974117) supported by the National Natural Science Foundation of ChinaProject(20110491489) supported by China Postdoctoral Science FoundationProject(2011QNA03) supported by Fundamental Research Funds for Central Universities, China
文摘In order to obtain the earth pressure coefficient at rest (K0) at higher consolidation pressures during secondary compression, a series of K0 tests for saturated reconstituted clay were conducted. The results indicate that the measured K0 in secondary compression can be described by equations related to internal friction angle, secondary compression coefficient, compression index, recompression index, and sediment time. Effects of consolidation pressures and sediment time on K0 during secondary compression can be attributed to cementation (part of cohesion) increase and internal friction angle decrease. Cementation increase leads to nonlinear variation for K0 and internal friction angle decrease results in increase of K0. K0 computed by equations associated with internal friction angle is overestimated at apparent lower consolidation pressures with different sediment time, which agrees with the measured values well at apparent higher consolidation pressures.
基金This study was financially supported by the Foundation Research Program[grant number UD170027GD]of the Agency for Defense Development and the Defense Acquisition Program Administration of the Republic of Korea.
文摘The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance of ricocheted debris must be accurately predicted.This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium.Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand.Finite element analysis(FEA)was then applied to these variables to predict the speed and angle of the debris after ricochet.The FEA results were compared with results of low-speed ricochet experiments,which employed variable temperature and water content.The travel distance of the debris was calculated using MATLAB,via trajectory equations considering the drag coefficient.As the internal friction angle decreased,the shear stress decreased,leading to deeper penetration of the debris into the sand.As the loss of kinetic energy increased,the velocity and travel distance of the ricocheted debris decreased.Changes in the ricochet velocity and travel distance of the debris,according to changes in the internal friction angle,indicated that the debris was affected by the environment.
文摘<span style="font-family:Verdana;">This paper proposes a numerical simulation of the mechanical behavior of a reinforced concrete pile foundation under an axial load. In fact, the foundation of a structure represents the essential structural part of it, because it ensures its bearing capacity. Among the types of foundation, </span><span style="font-family:Verdana;">deep</span><span style="font-family:Verdana;"> foundation is the one for which from a mechanical point of view, the justification takes into account the isolated or combined effects of base resistance offered by the soil bed and lateral friction at the soil-pile interface;the latter being the consequence of a large contact surface with the surrounding soil;hence the need to study the interaction between the soil and the pile in service, in order to highlight the characteristics of soil which influence the mechanical behavior of pile and therefore the stability of the structure. In this study,</span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">the reinforced concrete pile is supposed to be </span><span style="font-family:Verdana;">elastic,</span><span style="font-family:Verdana;"> and characterized by a young’s modulus (</span><i><span style="font-family:Verdana;">E</span></i><span style="font-family:Verdana;">) and a Poisson’s ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">ν</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). The soil obeys to a Camclay model characterized by </span><span style="font-family:Verdana;">a cohesion</span><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">c</span></i><span style="font-family:Verdana;">), an initial voids ratio (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">e</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">), shearing resistance angle (</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">φ</span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> a pre-consolidation pressure (</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;">P</span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub><span style="font-family:Verdana;">0</span></sub></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">). A joint model with a </span><span style="font-family:Verdana;">Mohr Coulomb</span><span style="font-family:Verdana;"> behavior characterizes the soil-pile interface. The loading is carrying out by imposing a vertical monotonic displacement at the head of </span><span style="font-family:Verdana;">pile</span><span style="font-family:Verdana;">. The results in terms of stress and displacement show that the bearing capacity of the pile is influenced by various soils characteristics, it appears that the vertical stress and the force mobilized at rupture increase when the initial pre_consolidation pressure, the cohesion </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> the internal friction angle of soil increase;and when the initial soil voids index decreases.</span></span></span></span>
文摘Based on the basic concept of Plandell's assumption,the plasticity balance principle is applied to analyze the bearing capacity of the two-layer foundation,and the formula of bearing capacity of the two-layer foundation is obtained.The variation of bearing capacity of the foundation under different soil conditions is analyzed,and different calculation parameters are obtained.The effect on the ultimate bearing capacity of the two-layer foundation.The study found that:(1)For homogeneous soils,the formula obtained in this paper is the same as the Plandell formula;(2)the cohesive force of the soil,the soil bulk density above the foundation,and the aspect ratio have less influence on the bearing capacity of the foundation than the internal friction angle.Much;(3)The upper and lower layers of different strength ratios have different critical depths and increase with the increase of the relative strength of the upper layers.(4)This paper assumes that the foundation is completely smooth and ignores the influence of the bulk density of the foundation soil,which is not consistent with sand.
基金the financial support for the Special Projects of the Central Government Guiding Local Science and Technology Development in China(Guike.ZY21195022)the research provided by Guangxi Natural Science Foundation(2021GXNSFBA075017)+1 种基金the National Natural Science Foundation of China(No.42007055 and 42107350)the Guangxi Training Program of Innovation and Entrepreneurship for Undergraduates(No.S202210593236).
文摘The changes in the mechanical properties of collapsing walls under the influence of natural factors in the hilly area of southern China need to be determined.We systematically studied the influence of the interaction of dry densityρ(1.0,1.1,1.2,1.3,1.4 g/cm3)and moisture content w(0.05,0.1,0.15,0.2,0.25 g/g)on the stability of four soil layers in a collapsing wall.The soil cohesion decreased with increasing soil depth.The cohesion force initially increased and then decreased with increasingωand increased with increasingρ;the internal friction angle was mainly affected byωand decreased with increasingω.The cohesion could be used to effectively characterize the stability of the collapsing wall.The shear strength index was modeled based on interaction between the dry density and moisture content(R2>0.95).The optimal combination of moisture content and dry density was obtained,and the collapsing wall was in the most stable state at a moisture content of 0.12-0.19 g/g and a dry density of 1.40 g/cm3.Based on the analysis of the critical height and safety factor(FS),the FS values of the sandy layer(C)was 0.53 and 0.57 forωvalues of 0.25 g/g and 0.05 g/g,respectively.In the alternating process of soil wetting and drying,the basic properties of the soil changed;caused traceback erosion,and thereby affected the stability of the collapsing wall.Our study provides a theoretical basis for the investigation of the factors influencing the stability of collapsing walls.
基金The authors would like to thank Project Management Office of Ondokuz Mayıs University for financial support to this project(Z-479).
文摘The aim of this study was to determine the structural designing parameters of silo and bins used for storage of some hybrid corn varieties(Zea mays L.).In the research,three corn varieties-dentcorn(Zea mays indentata Sturt.),popcorn(Zea mays everta Sturt.),sweetcorn(Zea mays sacharata Sturt.)-widespread cultivated in Turkey were used.Physico-mechanical parameters(bulk density,true density,angle of internal friction,static coefficient of friction)were considered as the dependent variables,and moisture content(8%,10%,12%,and 14%)as the independent variable.The bulk density,true density and angle of internal friction varied from 608.46 to 856.46 kg/m^(3),950.88 to 1110.89 kg/m^(3),and 25.2°to 34.2°,respectively,with the increase in moisture content from 8% to 14%.According to results of the research,the highest average value for bulk density,true density,angle of internal friction were found in popcorn variety(839.17 kg/m^(3)),popcorn variety(1074.40 kg/m^(3)),sweetcorn variety(30.50°),respectively.The highest average value for static coefficient of friction at concrete surface(C30)was recorded in dentcorn variety(0.662).
基金the EU for financial support through the Framework 6 Marie Curie Action "NEWGROWTH", contract number MEST-CT-2005-020724Johnson Matthey Plc and Birmingham Science City for funding and supporting this research
文摘In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical methods such as the Hausner ratio and the Cart index, This was confirmed by bulk measurements of the particle-particle internal friction parameter and flow function using a Schulze shear cell, which also illustrated the low compressibility of the material. Single particle compression was used to characterize single particle mechanical properties such as reduced elastic modulus and strength from Hertz contact mechanics theory. Comparison with surface properties obtained from nanoindentation suggests heterogeneity, the surface being harder than the core. In order to evaluate the relationship between single particle mechanical properties and bulk compression behaviour, uniaxial confined compression was carried out. It was determined that the Adams model was suitable for describing the bulk compression and furthermore that the Adams model parameter, apparent strength of single particles, was in good agreement with the single particle strength determined from single particle compression test.