Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established ac...Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established according to coal mine intrinsic safety standards. It provides theory support for the application of high power intrinsically safe power supply. The released energy of output short circuit of switch power supply, and the close related factors that influence the biggest output short-circuit spark discharge energy are the theoretical basis of the power supply. It is shown how to make a high power intrinsically safe power supply using the calculated values in the mathematical model, and take values from intrinsically safe requirements parameters scope, then this theoretical calculation value can be developed as the ultimate basis for research of the power supply. It gets the identification method of intrinsically safe from mathematics model of intrinsically safe power supply characteristics study, which solves the problem of theory and application of designing different power intrinsically safe power supply, and designs a kind of high power intrinsically safe power supply through this method. energy, flyback展开更多
An Equivalent-Resistance based Analysis Method (ERAM) was proposed, which can convert the Inductor-Disconnected Discharge (IDD) behavior of the Intrinsically Safe Buck Converter (ISBC) into that of an Equivalent Simpl...An Equivalent-Resistance based Analysis Method (ERAM) was proposed, which can convert the Inductor-Disconnected Discharge (IDD) behavior of the Intrinsically Safe Buck Converter (ISBC) into that of an Equivalent Simple-Inductive-Circuit (ESIC). According to the inductor disconnected equivalent circuit corresponding to the most dan- gerous operating case of the converter,the arc discharge time and the variation of out- put-voltage during the IDD were deduced based on the simple current linear attenuation model.According to the energy equivalence,the equivalent inductor-current of the ESIC was obtained.It is pointed out that although the inductor-current of the Buck converter is much lower than that of the published ignition curve,ignition still occurs and the ignition ability is strengthened with increase of the output capacitance.The proposed analyzing method is verified by the experiment results on IEC standard spark ignition apparatus.展开更多
文摘Aiming to make a high power direct current supply safely used in coal mine production, this paper made a deep research on characteristics of intrinsically safe power supply, using the mathematical model established according to coal mine intrinsic safety standards. It provides theory support for the application of high power intrinsically safe power supply. The released energy of output short circuit of switch power supply, and the close related factors that influence the biggest output short-circuit spark discharge energy are the theoretical basis of the power supply. It is shown how to make a high power intrinsically safe power supply using the calculated values in the mathematical model, and take values from intrinsically safe requirements parameters scope, then this theoretical calculation value can be developed as the ultimate basis for research of the power supply. It gets the identification method of intrinsically safe from mathematics model of intrinsically safe power supply characteristics study, which solves the problem of theory and application of designing different power intrinsically safe power supply, and designs a kind of high power intrinsically safe power supply through this method. energy, flyback
基金the Key Research Project of Science and Technology of Xi'an,China(YF07020)
文摘An Equivalent-Resistance based Analysis Method (ERAM) was proposed, which can convert the Inductor-Disconnected Discharge (IDD) behavior of the Intrinsically Safe Buck Converter (ISBC) into that of an Equivalent Simple-Inductive-Circuit (ESIC). According to the inductor disconnected equivalent circuit corresponding to the most dan- gerous operating case of the converter,the arc discharge time and the variation of out- put-voltage during the IDD were deduced based on the simple current linear attenuation model.According to the energy equivalence,the equivalent inductor-current of the ESIC was obtained.It is pointed out that although the inductor-current of the Buck converter is much lower than that of the published ignition curve,ignition still occurs and the ignition ability is strengthened with increase of the output capacitance.The proposed analyzing method is verified by the experiment results on IEC standard spark ignition apparatus.