In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current ...In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.展开更多
A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. Th...A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.展开更多
An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint ...For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.展开更多
This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-conn...This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.展开更多
To determine a variation of pipe's inner geometric shape as due to etch, the three-layered feedforward artificial neural network is used in the inverse analysis through observing the elastoplastic strains of the o...To determine a variation of pipe's inner geometric shape as due to etch, the three-layered feedforward artificial neural network is used in the inverse analysis through observing the elastoplastic strains of the outer wall under the working inner pressure. Because of different kinds of inner wail radii and eccentricity. several groups of strains calculated with computational mechanics are used for the network to do learning. Numerical calculation demonstrates that this method is effective and the estimated inner wall geometric parameters have high precision.展开更多
We introduce a multi-cost-functional method for solving inverse problems of wave equations. This method has its simplicity, efficiency and good physical interpretation. It has the advantage of being programmed for two...We introduce a multi-cost-functional method for solving inverse problems of wave equations. This method has its simplicity, efficiency and good physical interpretation. It has the advantage of being programmed for two- or three- (space) dimensional problems as well as for one-dimensional problems.展开更多
The following inverse problem is solved—given the eigenvalues and the potential b(n) for a difference boundary value problem with quadratic dependence on the eigenparameter, λ, the weights c(n) can be uniquely ...The following inverse problem is solved—given the eigenvalues and the potential b(n) for a difference boundary value problem with quadratic dependence on the eigenparameter, λ, the weights c(n) can be uniquely reconstructed. The investi-gation is inductive on m where represents the number of unit intervals and the results obtained depend on the specific form of the given boundary conditions. This paper is a sequel to [1] which provided an algorithm for the solution of an analogous inverse problem, where the eigenvalues and weights were given and the potential was uniquely reconstructed. Since the inverse problem considered in this paper contains more unknowns than the inverse problem considered in [1], an additional spectrum is required more often than was the case in [1].展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
Following the previous work,we shall study some inverse problems for the Dirac operator on an equilateral star graph.It is proven that the so-called Weyl function uniquely determines the potentials.Furthermore,we pay ...Following the previous work,we shall study some inverse problems for the Dirac operator on an equilateral star graph.It is proven that the so-called Weyl function uniquely determines the potentials.Furthermore,we pay attention to the inverse problem of recovering the potentials from the spectral data,which consists of the eigenvalues and weight matrices,and present a constructive algorithm.The basic tool in this paper is the method of spectral mappings developed by Yurko.展开更多
We study inverse spectral problems for radial Schrodinger operators in L^(2)(0,1).It is well known that for a radial Schrodinger operator,two spectra for the different boundary conditions can uniquely determine the po...We study inverse spectral problems for radial Schrodinger operators in L^(2)(0,1).It is well known that for a radial Schrodinger operator,two spectra for the different boundary conditions can uniquely determine the potential.However,if the spectra corresponding to the radial Schrodinger operators with the two potential functions miss a finite number of eigenvalues,what is the relationship between the two potential functions?Inspired by Hochstadt(1973)'s work,which handled the Sturm-Liouville operator with the potential q∈L^(1)(0,1),we give a corresponding result for radial Schrodinger operators with a larger class of potentials than L^(1)(0,1).When q∈L^(1)(0,1),we also consider the case where the spectra corresponding to the radial Schrodinger operators with the two potential functions miss an infinite number of eigenvalues and the eigenvalues are close in some sense.展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering pr...We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering problem by the variational method. We focus on a uniqueness result for the inverse scattering problem that is under what conditions an obstacle can be identified by the knowledge of the electric far-field pattern corresponding to all time-harmonic incident planes waves with a fixed wave number. To this end, we establish a chiral mixed reciprocity relation that connects the electric far-field pattern of a spherical wave with the scattered field of a plane wave.展开更多
We present an efficient numerical strategy for the Bayesian solution of inverse problems.Stochastic collocation methods,based on generalized polynomial chaos(gPC),are used to construct a polynomial approximation of th...We present an efficient numerical strategy for the Bayesian solution of inverse problems.Stochastic collocation methods,based on generalized polynomial chaos(gPC),are used to construct a polynomial approximation of the forward solution over the support of the prior distribution.This approximation then defines a surrogate posterior probability density that can be evaluated repeatedly at minimal computational cost.The ability to simulate a large number of samples from the posterior distribution results in very accurate estimates of the inverse solution and its associated uncertainty.Combined with high accuracy of the gPC-based forward solver,the new algorithm can provide great efficiency in practical applications.A rigorous error analysis of the algorithm is conducted,where we establish convergence of the approximate posterior to the true posterior and obtain an estimate of the convergence rate.It is proved that fast(exponential)convergence of the gPC forward solution yields similarly fast(exponential)convergence of the posterior.The numerical strategy and the predicted convergence rates are then demonstrated on nonlinear inverse problems of varying smoothness and dimension.展开更多
This paper proposes a semi‐analytical and local meshless collocation method,the loca-lized method of fundamental solutions(LMFS),to address three‐dimensional(3D)acoustic inverse problems in complex domains.The propo...This paper proposes a semi‐analytical and local meshless collocation method,the loca-lized method of fundamental solutions(LMFS),to address three‐dimensional(3D)acoustic inverse problems in complex domains.The proposed approach is a recently developed numerical scheme with the potential of being mathematically simple,nu-merically accurate,and requiring less computational time and storage.In LMFS,an overdetermined sparse linear system is constructed by using the known data at the nodes on the accessible boundary and by making the remaining nodes satisfy the governing equation.In the numerical procedure,the pseudoinverse of a matrix is solved via the truncated singular value decomposition,and thus the regularization techniques are not needed in solving the resulting linear system with a well‐conditioned matrix.Numerical experiments,involving complicated geometry and the high noise level,confirm the ef-fectiveness and performance of the LMFS for solving 3D acoustic inverse problems.展开更多
This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is ...This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is unknown but can be consistently estimated, and its inverse is discontinuous, rendering the problem ill-posed. We establish the consistency for the class of estimators that are regularized using general lower semicompact penalty functions. We derive the optimal convergence rates of the estimators under the Hilbert scale norms. We apply our results to two important problems in economics and finance: (1) estimating the parameters of the pricing kernel of defaultable bonds; (2) recovering the volatility surface implied by option prices allowing for measurement error in the option prices and numerical error in the computation of the operator.展开更多
Let G be a finite abelian group and S be a sequence with elements of G.We say that S is a regular sequence over G if|SH|≤|H|-1 holds for every proper subgroup H of G,where SH denotes the subsequence of S consisting o...Let G be a finite abelian group and S be a sequence with elements of G.We say that S is a regular sequence over G if|SH|≤|H|-1 holds for every proper subgroup H of G,where SH denotes the subsequence of S consisting of all terms of S contained in H.We say that S is a zero-sum free sequence over G if 0■Σ(S),where Σ(S)■G denotes the set of group elements which can be expressed as a sum of a nonempty subsequence of S.In this paper,we study the inverse problems associated with Σ(S)when S is a regular sequence or a zero-sum free sequence over G=Cp■Cp,where p is a prime.展开更多
A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-spa...A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements.With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C,both modeled as random variables,we derive a formula for the posterior marginal of m.Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value[11].We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase.Simply put,our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense.Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded.We also explain how our proof can be extended to a whole class of inverse problems,as long as some basic requirements are met.Finally,we show numerical simulations that illustrate the numerical convergence of our algorithm.展开更多
基金Supported by the National Natural Science Foundation of China(11971433)First Class Discipline of Zhe-jiang-A(Zhejiang Gongshang University-Statistics,1020JYN4120004G-091),Graduate Scientic Research and Innovation Foundation of Zhejiang Gongshang University.
文摘In this paper,weak optimal inverse problems of interval linear programming(IvLP)are studied based on KKT conditions.Firstly,the problem is precisely defined.Specifically,by adjusting the minimum change of the current cost coefficient,a given weak solution can become optimal.Then,an equivalent characterization of weak optimal inverse IvLP problems is obtained.Finally,the problem is simplified without adjusting the cost coefficient of null variable.
文摘A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.
文摘For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.
文摘This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.
文摘To determine a variation of pipe's inner geometric shape as due to etch, the three-layered feedforward artificial neural network is used in the inverse analysis through observing the elastoplastic strains of the outer wall under the working inner pressure. Because of different kinds of inner wail radii and eccentricity. several groups of strains calculated with computational mechanics are used for the network to do learning. Numerical calculation demonstrates that this method is effective and the estimated inner wall geometric parameters have high precision.
文摘We introduce a multi-cost-functional method for solving inverse problems of wave equations. This method has its simplicity, efficiency and good physical interpretation. It has the advantage of being programmed for two- or three- (space) dimensional problems as well as for one-dimensional problems.
文摘The following inverse problem is solved—given the eigenvalues and the potential b(n) for a difference boundary value problem with quadratic dependence on the eigenparameter, λ, the weights c(n) can be uniquely reconstructed. The investi-gation is inductive on m where represents the number of unit intervals and the results obtained depend on the specific form of the given boundary conditions. This paper is a sequel to [1] which provided an algorithm for the solution of an analogous inverse problem, where the eigenvalues and weights were given and the potential was uniquely reconstructed. Since the inverse problem considered in this paper contains more unknowns than the inverse problem considered in [1], an additional spectrum is required more often than was the case in [1].
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
基金Supported by NSFC(Grant No.11871031)the Natural Science Foundation of the Jiangsu Province of China(Grant No.BK20201303)。
文摘Following the previous work,we shall study some inverse problems for the Dirac operator on an equilateral star graph.It is proven that the so-called Weyl function uniquely determines the potentials.Furthermore,we pay attention to the inverse problem of recovering the potentials from the spectral data,which consists of the eigenvalues and weight matrices,and present a constructive algorithm.The basic tool in this paper is the method of spectral mappings developed by Yurko.
基金supported by National Natural Science Foundation of China (Grant No.11871031)the Natural Science Foundation of Jiangsu Province of China (Grant No.BK 20201303)。
文摘We study inverse spectral problems for radial Schrodinger operators in L^(2)(0,1).It is well known that for a radial Schrodinger operator,two spectra for the different boundary conditions can uniquely determine the potential.However,if the spectra corresponding to the radial Schrodinger operators with the two potential functions miss a finite number of eigenvalues,what is the relationship between the two potential functions?Inspired by Hochstadt(1973)'s work,which handled the Sturm-Liouville operator with the potential q∈L^(1)(0,1),we give a corresponding result for radial Schrodinger operators with a larger class of potentials than L^(1)(0,1).When q∈L^(1)(0,1),we also consider the case where the spectra corresponding to the radial Schrodinger operators with the two potential functions miss an infinite number of eigenvalues and the eigenvalues are close in some sense.
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
文摘We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering problem by the variational method. We focus on a uniqueness result for the inverse scattering problem that is under what conditions an obstacle can be identified by the knowledge of the electric far-field pattern corresponding to all time-harmonic incident planes waves with a fixed wave number. To this end, we establish a chiral mixed reciprocity relation that connects the electric far-field pattern of a spherical wave with the scattered field of a plane wave.
基金The work of Y.Marzouk is supported in part by the DOE Office of Advanced Scientific Computing Research(ASCR)by Sandia Corporation(a wholly owned subsidiary of Lockheed Martin Corporation)as operator of Sandia National Laboratories under US Department of Energy contract number DE-AC04-94AL85000+1 种基金The work of D.Xiu is supported in part by AFOSR FA9550-08-1-0353,NSF CAREER Award DMS-0645035the DOE/NNSA PSAAP center at Purdue(PRISM)under contract number DE-FC52-08NA28617.
文摘We present an efficient numerical strategy for the Bayesian solution of inverse problems.Stochastic collocation methods,based on generalized polynomial chaos(gPC),are used to construct a polynomial approximation of the forward solution over the support of the prior distribution.This approximation then defines a surrogate posterior probability density that can be evaluated repeatedly at minimal computational cost.The ability to simulate a large number of samples from the posterior distribution results in very accurate estimates of the inverse solution and its associated uncertainty.Combined with high accuracy of the gPC-based forward solver,the new algorithm can provide great efficiency in practical applications.A rigorous error analysis of the algorithm is conducted,where we establish convergence of the approximate posterior to the true posterior and obtain an estimate of the convergence rate.It is proved that fast(exponential)convergence of the gPC forward solution yields similarly fast(exponential)convergence of the posterior.The numerical strategy and the predicted convergence rates are then demonstrated on nonlinear inverse problems of varying smoothness and dimension.
基金National Natural Science Foundation of China,Grant/Award Number:11802151Natural Science Foundation of Shandong Province of China,Grant/Award Number:ZR2019BA008+1 种基金supported by the National Natural Science Foundation of China(No.11802151)the Natural Science Foundation of Shandong Province of China(No.ZR2019BA008).
文摘This paper proposes a semi‐analytical and local meshless collocation method,the loca-lized method of fundamental solutions(LMFS),to address three‐dimensional(3D)acoustic inverse problems in complex domains.The proposed approach is a recently developed numerical scheme with the potential of being mathematically simple,nu-merically accurate,and requiring less computational time and storage.In LMFS,an overdetermined sparse linear system is constructed by using the known data at the nodes on the accessible boundary and by making the remaining nodes satisfy the governing equation.In the numerical procedure,the pseudoinverse of a matrix is solved via the truncated singular value decomposition,and thus the regularization techniques are not needed in solving the resulting linear system with a well‐conditioned matrix.Numerical experiments,involving complicated geometry and the high noise level,confirm the ef-fectiveness and performance of the LMFS for solving 3D acoustic inverse problems.
基金supported by US National Science Foundation (Grant No. SES-0631613)the Cowles Foundation for Research in Economics
文摘This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is unknown but can be consistently estimated, and its inverse is discontinuous, rendering the problem ill-posed. We establish the consistency for the class of estimators that are regularized using general lower semicompact penalty functions. We derive the optimal convergence rates of the estimators under the Hilbert scale norms. We apply our results to two important problems in economics and finance: (1) estimating the parameters of the pricing kernel of defaultable bonds; (2) recovering the volatility surface implied by option prices allowing for measurement error in the option prices and numerical error in the computation of the operator.
基金supported in part by the Fundamental Research Funds for the Central Universities(No.3122019152)the National Natural Science Foundation of China(Grant Nos.11701256,11871258)+2 种基金the Youth Backbone Teacher Foundation of Henan's University(No.2019GGJS196)the China Scholarship Council(Grant No.201908410132)was also supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN 2017-03903).
文摘Let G be a finite abelian group and S be a sequence with elements of G.We say that S is a regular sequence over G if|SH|≤|H|-1 holds for every proper subgroup H of G,where SH denotes the subsequence of S consisting of all terms of S contained in H.We say that S is a zero-sum free sequence over G if 0■Σ(S),where Σ(S)■G denotes the set of group elements which can be expressed as a sum of a nonempty subsequence of S.In this paper,we study the inverse problems associated with Σ(S)when S is a regular sequence or a zero-sum free sequence over G=Cp■Cp,where p is a prime.
基金This work was supported by Simons Foundation Collaboration Grant[351025]。
文摘A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements.With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C,both modeled as random variables,we derive a formula for the posterior marginal of m.Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value[11].We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase.Simply put,our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense.Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded.We also explain how our proof can be extended to a whole class of inverse problems,as long as some basic requirements are met.Finally,we show numerical simulations that illustrate the numerical convergence of our algorithm.