Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually...Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-Newtonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little difference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tangential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.展开更多
Base on the theory of energy minimization, a numerical algorithm is established to calculate load distribution, and the relationship curve of spur gear load distribution is obtained, and the load distribution ratio ch...Base on the theory of energy minimization, a numerical algorithm is established to calculate load distribution, and the relationship curve of spur gear load distribution is obtained, and the load distribution ratio changes from 033 to 067 in double contact zone. This theory is adopted to compute the load distribution of helical gear along time-varying contact line, and the load distribution varies with the instantaneous position of the meshing point and the length of contact line, and the maximum value of load appears at the pitch point. Compared with the load distribution results, the helical gear changes more smoothly than spur gear. The load distribution provides a basis for calculate tooth bending deformation and critical stress.展开更多
Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a thre...Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components.展开更多
Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short...Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short) is investigated. The results suggest that gearlubrication effects bear close relations to a dimensionless parameter D which is syntheticallydetermined by gearing rotational speed, load, material, dimension and lubricant viscosity. When D<=8, the gear fatigue life increases as the lubricant viscosity is increased; When D>8, however, thelife decreases with the viscosity addition, which is in marked contrast to the lubrication factorZ_L recommended by the International Standard for Computing Cylindrical Gear Strength. At the end, aset of formulae for calculating gear lubrication factors suitable for different working conditionsare advanced.展开更多
The D'Alembert-Lagrange equation is introduced and used to derive theformulas of momentary efficiency for external gearing of standard involutes spur gears. The gearingswith correct and increased center distance a...The D'Alembert-Lagrange equation is introduced and used to derive theformulas of momentary efficiency for external gearing of standard involutes spur gears. The gearingswith correct and increased center distance are discussed. The momentary efficiency formula iscalculated and analyzed using software Matlab. The derived formula of momentary efficiency is alsocompared with the traditional formula.展开更多
The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of imp...The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of impact loadings. To improve this phenomenon, a new pretensioning gear system with cycloid teeth rather than the involute ones was proposed, and dual cycloidal gear mechanisms were designed for satisfying geometric constraints and dynamic loading conditions. The simulations of the prototypes were conducted by LS-DYNA program and the experiments for a prototype were performed for a dynamic model with impact loading devices. The results show that the better operation and the smoother motion are confirmed in the proposed cycloidal gear system rather than the conventional one without interferences between gear teeth under the impact of a crash.展开更多
The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic t...The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.展开更多
The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fat...The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52075279)。
文摘Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-Newtonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little difference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tangential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.
基金Sponsored by the Eleventh Five-years Drive for Basic Research Project
文摘Base on the theory of energy minimization, a numerical algorithm is established to calculate load distribution, and the relationship curve of spur gear load distribution is obtained, and the load distribution ratio changes from 033 to 067 in double contact zone. This theory is adopted to compute the load distribution of helical gear along time-varying contact line, and the load distribution varies with the instantaneous position of the meshing point and the length of contact line, and the maximum value of load appears at the pitch point. Compared with the load distribution results, the helical gear changes more smoothly than spur gear. The load distribution provides a basis for calculate tooth bending deformation and critical stress.
基金support provided by the National Nature Science Foundation of China (Grant Nos.52075340,51875360)Project of Science and Technology Commission of Shanghai Municipality (No.19060502300).
文摘Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components.
基金This project is supported by Provincial Natural Science Foundation of shanxi,China(No.20001047)
文摘Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short) is investigated. The results suggest that gearlubrication effects bear close relations to a dimensionless parameter D which is syntheticallydetermined by gearing rotational speed, load, material, dimension and lubricant viscosity. When D<=8, the gear fatigue life increases as the lubricant viscosity is increased; When D>8, however, thelife decreases with the viscosity addition, which is in marked contrast to the lubrication factorZ_L recommended by the International Standard for Computing Cylindrical Gear Strength. At the end, aset of formulae for calculating gear lubrication factors suitable for different working conditionsare advanced.
文摘The D'Alembert-Lagrange equation is introduced and used to derive theformulas of momentary efficiency for external gearing of standard involutes spur gears. The gearingswith correct and increased center distance are discussed. The momentary efficiency formula iscalculated and analyzed using software Matlab. The derived formula of momentary efficiency is alsocompared with the traditional formula.
基金supported by the Changwon National University in 2011-2012,Korea
文摘The most conventional vehicle pretensioner system consists of an internal gear pair with involute teeth. However, it has been well known that the corresponding gear pairs are relatively weak under the situation of impact loadings. To improve this phenomenon, a new pretensioning gear system with cycloid teeth rather than the involute ones was proposed, and dual cycloidal gear mechanisms were designed for satisfying geometric constraints and dynamic loading conditions. The simulations of the prototypes were conducted by LS-DYNA program and the experiments for a prototype were performed for a dynamic model with impact loading devices. The results show that the better operation and the smoother motion are confirmed in the proposed cycloidal gear system rather than the conventional one without interferences between gear teeth under the impact of a crash.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.
基金This project is supported by Provincial Natural Science Foundation of Shanxi, China (No. 20041057)Scholarship Council of Shanxi, China (No. 2005-22)
文摘The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.