The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectro...The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectroscopy(XPS). According to the results of micro-flotation, Bi(Ⅲ) ions could largely improve the rutile flotation recovery(from 62% to 91%), and they could increase the activating sites and reduce the competitive adsorption between nonyl hydroxamic acid negative ions and OH-ions, which determined that Bi(Ⅲ) ions were capable of activating rutile flotation. The adsorption of Bi(Ⅲ) ions onto the rutile surface led to the shift of Zeta potential into the positive direction, which was good for the adsorption of nonyl hydroxamic acid anions. In addition, the results of XPS indicated that the chemical environment around Ti atom had not changed before and after the adsorption of Bi(Ⅲ) ions. Based on the adsorption mechanism of Bi(Ⅲ) ions, it was deduced that firstly Bi(Ⅲ) ions occupied the vacancies of the original Ca^2+, Mg^2+ and Fe^2+ ions on the rutile surface; secondly Bi(Ⅲ) ions covered on the rutile surface in the form of hydroxides.展开更多
To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-s...To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-selective electrode (ISE) and calibrating with Cu-buffer solution. Three copper buffers including iminodiacetic acid (IDA), ethylenediamine (EN), and glycine (Gly) were compared for calibrating the Cu-ISE curves in the range of free cupric ions (pCu^2+) 7-13. The Cu-EN buffer showed the best electrode response and thus was applied as the calibration buffer. The pCu^2+ of 39 contaminated agricultural soils around a copper mine was measured, ranging from 5.03 to 9.20. Most Cu in the soil solutions was found to be complexed with dissolved soil organic matters, averaging 98.1%. The proportion of free Cu^2+ ions in the soil solutions decreased with the increasing of solution pH. Soluble Cu and free Cu^2+ ions concentrations were analyzed by multiple linear regressions to evaluate the effects of soil properties on metal levels and speciation. The results showed that soil solution pH was the most significant factor influencing pCu^2+ (with R^2 value of 0.76), while not important for the soluble Cu concentration.展开更多
A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cel...A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.展开更多
TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were...TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflection spectroscopy. Photoelectric property was evaluated under visible light using a xenon lamp as illuminant. The experimental results indicate that the implanting carbon concentration has a significant infl uence on film's micro structure and element valence states. The dominant valence states of carbon vary as carbon content increases. Carbon ion implantation remarkably enhances the current density and photocatalytic capability of TiO2 thin films. The optimized implanting content is 9.83×10^17 ion/cm^2, which gives rise to a 150% increased photocurrent and degradation rate.展开更多
1 IntrodutionInterleukin-2(IL-2)was found to selectively keep growth of T lymphocytes for longperiod in vitro in 1976,and was then named T cell growth factor,TCGF.After that,IL-2 was found to promote proliferation of ...1 IntrodutionInterleukin-2(IL-2)was found to selectively keep growth of T lymphocytes for longperiod in vitro in 1976,and was then named T cell growth factor,TCGF.After that,IL-2 was found to promote proliferation of various cells,mainly including T,B,NK,and to in-crease activity of T cell and NK cell.Discovery of its surprising effect in treatment of can-cer,tumor through inducing LAK(lymphokine-activated killer cells)or activating TIL(tumor infiltrated lymphocytes)to kill cancer cell made it very attractive.Therefore it wasfound a wide application in therapy of cancer,immunodeficiency and diseases relating toinfection.However,in its application,problem was found that it had very serious side-effect,and very high dose made the side effect even more serious.The aim of this study was to find a simple way to stabilize IL-2 so as to lower the doserequired in application and in turn to solve the problem.展开更多
A fundamental problem for cells with their fragile membranes is the control of their volume.The primordial solution to this problem is the active transport of ions across the cell membrane to modulate the intracellula...A fundamental problem for cells with their fragile membranes is the control of their volume.The primordial solution to this problem is the active transport of ions across the cell membrane to modulate the intracellular osmotic pressure.In this work,a theoretical model of the cellular pump-leak mechanism is proposed within the general framework of linear nonequilibrium thermodynamics.The model is expressed with phenomenological equations that describe passive and active ionic transport across cell membranes,supplemented by an equation for the membrane potential that accounts for the electrogenicity of the ionic pumps.For active ionic transport,the model predicts that the intracellular fluid pressure will be balanced by the osmotic pressure and a new pressure component that arises from the active ionic fluxes.A model for the pump-leak mechanism in an idealized human cell is introduced to demonstrate the applicability of the proposed theory.展开更多
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,...An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions(ACI)and liquid densities of aqueous solutions.This new model is applied to model water+Na Cl binary system and water+gas+Na Cl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the experimental data of ACI,mean ionic activity coefficients(MIAC)and liquid densities of water+Na Cl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous Na Cl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6%and 1.4%compared to experimental reference values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of Na Cl on gases are analyzed and discussed.展开更多
In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- ti...In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.展开更多
The present study assesses the concentration,probabilistic risk,source classification,and dietary risk arising from heavy metal(HMs)pollution in agricultural soils affected by coal mining in eastern part of India.Anal...The present study assesses the concentration,probabilistic risk,source classification,and dietary risk arising from heavy metal(HMs)pollution in agricultural soils affected by coal mining in eastern part of India.Analyses of soil and rice plant indicated significantly elevated levels of HMs beyond the permissible limit in the contaminated zones(zone 1:PbSoil:108.24±72.97,CuSoil:57.26±23.91,CdSoil:8.44±2.76,CrSoil:180.05±46.90,NiSoil:70.79±25.06 mg/kg;PbGrain:0.96±0.8,CuGrain:8.6±5.1,CdGrain:0.65±0.42,CrGrain:4.78±1.89,NiGrain:11.74±4.38 mg/kg.zone 2:PbSoil:139.56±69.46,CuSoil:69.89±19.86,CdSoil:8.95±2.57,CrSoil:245.46±70.66,NiSoil:95.46±22.89 mg/kg;PbGrain:1.27±0.84,CuGrain:7.9±4.57,CdGrain:0.76±0.43,CrGrain:8.6±1.58,NiGrain:11.50±2.46 mg/kg)compared to the uncontaminated zone(zone 3).Carcinogenic and non-carcinogenic health risks were computed based on the HMs concentration in the soil and rice grain,with Pb,Cr,and Ni identified as posing a high risk to human health.Monte Carlo simulation,the solubility-free ion activity model(FIAM),and severity adjusted margin of exposure(SAMOE)were employed to predict health risk.FIAM hazard quotient(HQ)values for Ni,Cr,Cd,and Pb were>1,indicating a significant non-carcinogenic risk.SAMOE(risk thermometer)results for contaminated zones ranged from low to moderate risk(CrSAMOE:0.05,and NiSAMOE:0.03).Fuzzy-TOPSIS and variable importance plots(from random forest)showed that Ni and Cr were mostly responsible for the toxicity in the rice plant,respectively.A self-organizing map for source classification revealed common origin for the studied HMs with zone 2 exhibiting the highest contamination.The positive matrix factorization model for the source apportionment identified coal mining and transportation as the predominant sources of HMs.Spatial distribution analysis indicated higher contamination near mining sites as compared to distant sampling sites.Consequently,this study will aid environmental scientists and policymakers controlling HM pollution in agricultural soils near coal mines.展开更多
The Darcy's formula expressed by chemical indexes (ion activity a and saturation index β) is derived with the aid of the kinetics of multi-mineral dissolution. The implication of the formula and the relationship ...The Darcy's formula expressed by chemical indexes (ion activity a and saturation index β) is derived with the aid of the kinetics of multi-mineral dissolution. The implication of the formula and the relationship between the formula and the original Darcy's law expressed by hydraulic index (hydraulic gradient, Ⅰ) are discussed here. An analytic expression is established in this paper for the determination of the residence time of groundwater by chemical indexes, whose equivalence to isotopic age is studied. The formulas are derived from the calculation of permeability coefficient (K), conductivity coefficient (T) and actual velocity of groundwater (U). Finally, this paper introduces hydrogeological chemical kinetics constant (k j) and its determination method, differential and integral equations for chemical kinetics of groundwater in three-dimensional space.展开更多
Objective: To evaluate the influence of fruiting phenological stage on total flavonoid content, antioxidant activity, and antiproliferative effects of Cereus jamacaru(C. jamacaru)(mandacaru) cladodes and fruit. Method...Objective: To evaluate the influence of fruiting phenological stage on total flavonoid content, antioxidant activity, and antiproliferative effects of Cereus jamacaru(C. jamacaru)(mandacaru) cladodes and fruit. Methods: Fruit and cladodes at vegetative and fruiting stage of C. jamacaru were collected. The fruit was dissected and bark, pulp, and seeds were separated. Vegetative and fruiting cladodes, together with bark, pulp, and seeds were used to obtain five hydroalcoholic extracts. The extracts were investigated for total flavonoid content, using AlCl3 colorimetric method, antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging capacity and Fe^(2+) ion chelating activity, and in vitro antiproliferative effects(sarcoma 180 cells) by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2 H-tetrazolium bromide assay. Results: The extract of C. jamacaru cladodes at the fruiting stage showed higher flavonoid content compared to the other extracts. Seed extracts showed the highest antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays, and the extract of cladodes at vegetative stage showed better antioxidant activity in Fe^(2+) ion chelating activity. The extract of fruiting cladodes promoted higher antiproliferative effects compared to the other extracts. Conclusions: These findings suggest that fruiting increases the content of flavonoids and antiproliferative effects of C. jamacaru cladodes. Data reinforce the potential use of C. jamacaru cladodes and fruits as natural antioxidants and potent anticancer agent.展开更多
A controlled hydroponic experiment was undertaken to investigate Cd uptake in relation to the activity of Cd species in solution other than the free ion (Cd^2+) by maintaining a constant Cd^2+ activity under varia...A controlled hydroponic experiment was undertaken to investigate Cd uptake in relation to the activity of Cd species in solution other than the free ion (Cd^2+) by maintaining a constant Cd^2+ activity under variable SO4^2- and Cl^- concentrations exposed to maize (Zea mays vat. Cameron) plants. The objectives of these experiments were: (1) to distinguish and quantify the different uptake rates of free and inorganic-complexed Cd from nutrient solution, and (2) to model the uptake of Cd by maize with a Biotic Ligand Model (BLM) in a system which facilitates the close examination of root characteristics. Results of the current experiments suggest that, in addition to the free ion, CdSO4^0 complexes are important factors in determining Cd uptake in nutrient solution by maize plants. Higher nominal SO4^2- concentrations in solution generally resulted in a greater Cd accumulation by maize plants than predicted by the Cd^2+ activity. A better integration of the complete dataset for the 3 harvest times (6, 9 and 11 days after treatment) was achieved by including consideration of both the duration of Cd exposure and especially the root surface area to express Cd uptake. Similarly, the fit of the BLM was also improved when taking into account exposure time and expressing uptake in terms of root morphological parameters.展开更多
As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^...As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^2+,Mg^2+,Cu^2+,Fe^2+,Zn^2+,and K+which are the most common ions present in biological wastewater treatment systems,on the microbial attachment of AGAS and flocculent activated sludge(FAS),from which AGAS is always derived,in order to provide a new strategy for the rapid cultivation and stability control of AGAS.The result showed that attachment biomass of AGAS was about 300%higher than that of FAS without the addition of metal ions.Different metal ions had different effects on the process of microbial attachment.FAS and AGAS reacted differently to the metal ions as well,and in fact,AGAS was more sensitive to the metal ions.Specifically,Ca^2+,Mg^2+,and K+could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations,Cu^2+,Fe^2+,and Zn^2+were also beneficial to the microbial attachment of FAS at low concentrations,but Cu^2+,Fe^2+,and Zn^2+greatly inhibited the attachment process of AGAS even at extremely low concentrations.In addition,the acylated homoserine lactone(AHL)-based quorum sensing system,the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions.As all these parameters had close relationships with the microbial attachment process,the microbial attachment may be affected by changes of these parameters.展开更多
Neodymium oxyfluoride has received much attention in the fields of anionic solid electrolytes.luminescent,catalytic and magnetic materials because of its structure combined advantages of rareearth cations with F^(-)an...Neodymium oxyfluoride has received much attention in the fields of anionic solid electrolytes.luminescent,catalytic and magnetic materials because of its structure combined advantages of rareearth cations with F^(-)and O_(2)^(-)anions.In this work,neodynium oxyfluoride was synthesized by the reaction between neodymium oxide and four fluoride media with different fluoride ion activities.The synthesis processes in molten LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),NaF-CaF_(2)-NdF_(3)and NaF-KF-NdF_(3)are observed in situ by a confocal scanning laser microscope.The expansion of neodymium oxide particle is observed in the LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),and NaF-KF-NdF_(3)melts,and the growth of needle crystals on neodymium oxide particle is clearly observed in molten NaF-CaF_(2)-NdF_(3).Based on scanning electron microscopy(SEM)-energy dispersive X-ray spectroscopy(EDS)and X-ray diffraction(XRD)analyses of products,neodynium oxyfluoride was successfully synthesized in the four fluoride media.The neodynium oxyfluoride generated in the LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),and NaF-KF-NdF_(3)melts is a tetragonal structure.However,in molten NaF-CaF_(2)-NdF_(3),neodynium oxyfluoride with a rhombohedral structure is formed.It is suggested that the substitution of Na(Ⅰ)and Ca(Ⅱ)for Nd(Ⅲ)can transform NdOF from tetragonal structure to rhombohedral structure.The growth rate of needle crystals generated in molten NaF-CaF_(2)-NdF_(3)was calculated based on the result of a confocal scanning laser microscope,and it is found that the reaction kinetics of crystal formation is zero-order reaction.The effect of fluoride media on the structure and morphology of formed NdOF were evaluated by XRD,X-ray photoelectron spectroscopy(XPS)and SEM.The neodymium oxyfluoride prepared in the fluoride media with high fluoride ion activity has low binding energy of F 1 s.The ratio of adsorbed oxygen to lattice oxygen for neodymium oxyfluoride prepared in molten LiF-NdF_(3)is larger than those in the other three fluoride media,so it can have better catalytic performance.展开更多
To elucidate the effects of physisorbed active ions on the geometries and electronic structures of hydrogenated diamond films, models of HCO3, H3O^+, and OH^- ions physisorbed on hydrogenated diamond (100) surfaces...To elucidate the effects of physisorbed active ions on the geometries and electronic structures of hydrogenated diamond films, models of HCO3, H3O^+, and OH^- ions physisorbed on hydrogenated diamond (100) surfaces were constructed. Density functional theory was used to calculate the geometries, adsorption energies, and partial density of states. The results showed that the geometries of the hydrogenated diamond (100) surfaces all changed to different degrees after ion adsorption. Among them, the H3O^+ ion affected the geometry of the hydrogenated diamond (100) surfaces the most. This is well consistent with the results of the calculated adsorption energies, which indicated that a strong electrostatic attraction occurs between the hydrogenated diamond (100) surface and H3O^+ ions. In addition, electrons transfer significantly from the hydrogenated diamond (100) surface to the adsorbed H3O^+ ion, which induces a downward shift in the HOMO and LUMO energy levels of the H3O^+ ion. However, for active ions like OH^- and HCO3^, no dramatic change appears for the electronic structures of the adsorbed ions.展开更多
The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb2+and Zn2+in aqueous single-metal solutions. A p H value of the metal solutions at 6.0 was...The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb2+and Zn2+in aqueous single-metal solutions. A p H value of the metal solutions at 6.0 was beneficial to the high adsorption quantity of the biosorbent. The optimal mass ratio of the biosorbent to metal ions was found to be 2. A higher adsorption quantity of the biosorbent was achieved by keeping the reaction temperature below 55°C. Response surface methodology was applied to optimize the biosorption processes, and the developed mathematical equations showed high determination coefficients(above 0.99 for both metal ions) and insignificant lack of fit(p = 0.0838 and 0.0782 for Pb2+and Zn2+, respectively). Atomic force microscopy analyses suggested that the metal elements were adsorbed onto the biosorbent surface via electrostatic interaction. X-ray photoelectron spectroscopy analyses indicated the presence of complexation(between –NH2,-CN and metal ions) and ion-exchange(between –COOH and metal ions). The adsorption mechanisms could be the combined action of electrostatic interaction, complexation and ion-exchange between functional groups and metal ions.展开更多
Osmotic energy from the ocean,also called blue energy,serves as a clean,renewable,and vast energy source for the energy demands of the world.Reverse electrodialysis-based blue energy harvesting via ion-selective membr...Osmotic energy from the ocean,also called blue energy,serves as a clean,renewable,and vast energy source for the energy demands of the world.Reverse electrodialysis-based blue energy harvesting via ion-selective membranes,by the regulation and manipulation of directional ion transport,has been greatly developed recently.In particular,light has been employed to enhance directional ion transport for energy conversion through an increase in photo-induced surface charge.Here,the authors demonstrate a novel nanofluidic regulation strategy based on the phenomenon of light-induced heat-driven active ion transport through the lamellar MXene membrane.Due to the great light-induced heat effect,a temperature gradient appears as soon as illumination is applied to an off-center position,inducing an actively temperature gradient-driven ionic species transport.By employing this phenomenon,the authors conducted light-induced heat-enhanced osmotic energy conversion and doubled the osmotic energy conversion power density.This study has extended the scope of light-enhanced osmotic energy conversion and could further bring other photothermal materials into this field.Furthermore,the proposed system provides a new avenue of light-controlled ionic transport for ion gathering,desalination,and energy conversion applications.展开更多
基金Project(51474254)supported by the National Natural Science Foundation of ChinaProject(2013M531813)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016zzts111)supported by the Independent Exploration and Innovation Program of Central South University,ChinaProject(CSUZC201715)supported by Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectroscopy(XPS). According to the results of micro-flotation, Bi(Ⅲ) ions could largely improve the rutile flotation recovery(from 62% to 91%), and they could increase the activating sites and reduce the competitive adsorption between nonyl hydroxamic acid negative ions and OH-ions, which determined that Bi(Ⅲ) ions were capable of activating rutile flotation. The adsorption of Bi(Ⅲ) ions onto the rutile surface led to the shift of Zeta potential into the positive direction, which was good for the adsorption of nonyl hydroxamic acid anions. In addition, the results of XPS indicated that the chemical environment around Ti atom had not changed before and after the adsorption of Bi(Ⅲ) ions. Based on the adsorption mechanism of Bi(Ⅲ) ions, it was deduced that firstly Bi(Ⅲ) ions occupied the vacancies of the original Ca^2+, Mg^2+ and Fe^2+ ions on the rutile surface; secondly Bi(Ⅲ) ions covered on the rutile surface in the form of hydroxides.
基金The National Key Basic Research Program (973) of China (No. 2002CB410808) and CAS Research Program on Soil Biosystems andAgro-Product Safety (No. CXTD-Z2005-4-1)
文摘To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-selective electrode (ISE) and calibrating with Cu-buffer solution. Three copper buffers including iminodiacetic acid (IDA), ethylenediamine (EN), and glycine (Gly) were compared for calibrating the Cu-ISE curves in the range of free cupric ions (pCu^2+) 7-13. The Cu-EN buffer showed the best electrode response and thus was applied as the calibration buffer. The pCu^2+ of 39 contaminated agricultural soils around a copper mine was measured, ranging from 5.03 to 9.20. Most Cu in the soil solutions was found to be complexed with dissolved soil organic matters, averaging 98.1%. The proportion of free Cu^2+ ions in the soil solutions decreased with the increasing of solution pH. Soluble Cu and free Cu^2+ ions concentrations were analyzed by multiple linear regressions to evaluate the effects of soil properties on metal levels and speciation. The results showed that soil solution pH was the most significant factor influencing pCu^2+ (with R^2 value of 0.76), while not important for the soluble Cu concentration.
文摘A K+-selective electrode and a Na+-selective electrode were used to construct a measuring cell without liquid-junction for the determination of the ion activity ratio of K+ to Na+ in soil suspensions. The measured cell potential was not affected by the total electrolyte concentration when the total cation concentration was 10-1-10-3 mol L-1 and the concentration ratio CK+ / CNa+. was 10:1 to 1:50. When the concentration ratios were equal to 1and the total electrolyte concentrations were 10-2 and 10-3 mol L-1, the ion activity ratio measurement would not be affected by pH in the pH range of 3.5 to 11.5 and 4.4 to 11 respectively. Ions other than H+ have no remarkable influence on the measurement. The ion activity ratio of K+ to Na+ measured directly in soil suspension agree well with those in centrifuged supernant solution. The relative deviation was within 4%. From the measured ion activity ratio, the difference of the bonding energies of K+ and Na+ ions was calculated.
基金Funded by the National Basic Research Program of China(No.2012CB934303)the Joint Fund Launched by the Department of Science and Technology of Guizhou Province & Guizhou Minzu University(LKM[2012]24)the Guiyang Science&Technology Department([2012205]6-12)
文摘TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflection spectroscopy. Photoelectric property was evaluated under visible light using a xenon lamp as illuminant. The experimental results indicate that the implanting carbon concentration has a significant infl uence on film's micro structure and element valence states. The dominant valence states of carbon vary as carbon content increases. Carbon ion implantation remarkably enhances the current density and photocatalytic capability of TiO2 thin films. The optimized implanting content is 9.83×10^17 ion/cm^2, which gives rise to a 150% increased photocurrent and degradation rate.
文摘1 IntrodutionInterleukin-2(IL-2)was found to selectively keep growth of T lymphocytes for longperiod in vitro in 1976,and was then named T cell growth factor,TCGF.After that,IL-2 was found to promote proliferation of various cells,mainly including T,B,NK,and to in-crease activity of T cell and NK cell.Discovery of its surprising effect in treatment of can-cer,tumor through inducing LAK(lymphokine-activated killer cells)or activating TIL(tumor infiltrated lymphocytes)to kill cancer cell made it very attractive.Therefore it wasfound a wide application in therapy of cancer,immunodeficiency and diseases relating toinfection.However,in its application,problem was found that it had very serious side-effect,and very high dose made the side effect even more serious.The aim of this study was to find a simple way to stabilize IL-2 so as to lower the doserequired in application and in turn to solve the problem.
文摘A fundamental problem for cells with their fragile membranes is the control of their volume.The primordial solution to this problem is the active transport of ions across the cell membrane to modulate the intracellular osmotic pressure.In this work,a theoretical model of the cellular pump-leak mechanism is proposed within the general framework of linear nonequilibrium thermodynamics.The model is expressed with phenomenological equations that describe passive and active ionic transport across cell membranes,supplemented by an equation for the membrane potential that accounts for the electrogenicity of the ionic pumps.For active ionic transport,the model predicts that the intracellular fluid pressure will be balanced by the osmotic pressure and a new pressure component that arises from the active ionic fluxes.A model for the pump-leak mechanism in an idealized human cell is introduced to demonstrate the applicability of the proposed theory.
文摘An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions(ACI)and liquid densities of aqueous solutions.This new model is applied to model water+Na Cl binary system and water+gas+Na Cl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the experimental data of ACI,mean ionic activity coefficients(MIAC)and liquid densities of water+Na Cl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous Na Cl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6%and 1.4%compared to experimental reference values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of Na Cl on gases are analyzed and discussed.
文摘In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes.
文摘The present study assesses the concentration,probabilistic risk,source classification,and dietary risk arising from heavy metal(HMs)pollution in agricultural soils affected by coal mining in eastern part of India.Analyses of soil and rice plant indicated significantly elevated levels of HMs beyond the permissible limit in the contaminated zones(zone 1:PbSoil:108.24±72.97,CuSoil:57.26±23.91,CdSoil:8.44±2.76,CrSoil:180.05±46.90,NiSoil:70.79±25.06 mg/kg;PbGrain:0.96±0.8,CuGrain:8.6±5.1,CdGrain:0.65±0.42,CrGrain:4.78±1.89,NiGrain:11.74±4.38 mg/kg.zone 2:PbSoil:139.56±69.46,CuSoil:69.89±19.86,CdSoil:8.95±2.57,CrSoil:245.46±70.66,NiSoil:95.46±22.89 mg/kg;PbGrain:1.27±0.84,CuGrain:7.9±4.57,CdGrain:0.76±0.43,CrGrain:8.6±1.58,NiGrain:11.50±2.46 mg/kg)compared to the uncontaminated zone(zone 3).Carcinogenic and non-carcinogenic health risks were computed based on the HMs concentration in the soil and rice grain,with Pb,Cr,and Ni identified as posing a high risk to human health.Monte Carlo simulation,the solubility-free ion activity model(FIAM),and severity adjusted margin of exposure(SAMOE)were employed to predict health risk.FIAM hazard quotient(HQ)values for Ni,Cr,Cd,and Pb were>1,indicating a significant non-carcinogenic risk.SAMOE(risk thermometer)results for contaminated zones ranged from low to moderate risk(CrSAMOE:0.05,and NiSAMOE:0.03).Fuzzy-TOPSIS and variable importance plots(from random forest)showed that Ni and Cr were mostly responsible for the toxicity in the rice plant,respectively.A self-organizing map for source classification revealed common origin for the studied HMs with zone 2 exhibiting the highest contamination.The positive matrix factorization model for the source apportionment identified coal mining and transportation as the predominant sources of HMs.Spatial distribution analysis indicated higher contamination near mining sites as compared to distant sampling sites.Consequently,this study will aid environmental scientists and policymakers controlling HM pollution in agricultural soils near coal mines.
文摘The Darcy's formula expressed by chemical indexes (ion activity a and saturation index β) is derived with the aid of the kinetics of multi-mineral dissolution. The implication of the formula and the relationship between the formula and the original Darcy's law expressed by hydraulic index (hydraulic gradient, Ⅰ) are discussed here. An analytic expression is established in this paper for the determination of the residence time of groundwater by chemical indexes, whose equivalence to isotopic age is studied. The formulas are derived from the calculation of permeability coefficient (K), conductivity coefficient (T) and actual velocity of groundwater (U). Finally, this paper introduces hydrogeological chemical kinetics constant (k j) and its determination method, differential and integral equations for chemical kinetics of groundwater in three-dimensional space.
基金supported by grants from FAPES(Fundacao de Amparo a Pesquisa e Inovacao do Espirito Santo)-term of grant 225/2015
文摘Objective: To evaluate the influence of fruiting phenological stage on total flavonoid content, antioxidant activity, and antiproliferative effects of Cereus jamacaru(C. jamacaru)(mandacaru) cladodes and fruit. Methods: Fruit and cladodes at vegetative and fruiting stage of C. jamacaru were collected. The fruit was dissected and bark, pulp, and seeds were separated. Vegetative and fruiting cladodes, together with bark, pulp, and seeds were used to obtain five hydroalcoholic extracts. The extracts were investigated for total flavonoid content, using AlCl3 colorimetric method, antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging capacity and Fe^(2+) ion chelating activity, and in vitro antiproliferative effects(sarcoma 180 cells) by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2 H-tetrazolium bromide assay. Results: The extract of C. jamacaru cladodes at the fruiting stage showed higher flavonoid content compared to the other extracts. Seed extracts showed the highest antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays, and the extract of cladodes at vegetative stage showed better antioxidant activity in Fe^(2+) ion chelating activity. The extract of fruiting cladodes promoted higher antiproliferative effects compared to the other extracts. Conclusions: These findings suggest that fruiting increases the content of flavonoids and antiproliferative effects of C. jamacaru cladodes. Data reinforce the potential use of C. jamacaru cladodes and fruits as natural antioxidants and potent anticancer agent.
基金supported by the Severn Trent Water Ltd. as co-funders of the Biorem 11 (PASS) Project under the Bioremediation Link Programme (UK BBSRC)the financia support from CONACYT,Mexico (No. 137972)
文摘A controlled hydroponic experiment was undertaken to investigate Cd uptake in relation to the activity of Cd species in solution other than the free ion (Cd^2+) by maintaining a constant Cd^2+ activity under variable SO4^2- and Cl^- concentrations exposed to maize (Zea mays vat. Cameron) plants. The objectives of these experiments were: (1) to distinguish and quantify the different uptake rates of free and inorganic-complexed Cd from nutrient solution, and (2) to model the uptake of Cd by maize with a Biotic Ligand Model (BLM) in a system which facilitates the close examination of root characteristics. Results of the current experiments suggest that, in addition to the free ion, CdSO4^0 complexes are important factors in determining Cd uptake in nutrient solution by maize plants. Higher nominal SO4^2- concentrations in solution generally resulted in a greater Cd accumulation by maize plants than predicted by the Cd^2+ activity. A better integration of the complete dataset for the 3 harvest times (6, 9 and 11 days after treatment) was achieved by including consideration of both the duration of Cd exposure and especially the root surface area to express Cd uptake. Similarly, the fit of the BLM was also improved when taking into account exposure time and expressing uptake in terms of root morphological parameters.
基金supported by the National Natural Science Foundation of China (No. 51578069)
文摘As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^2+,Mg^2+,Cu^2+,Fe^2+,Zn^2+,and K+which are the most common ions present in biological wastewater treatment systems,on the microbial attachment of AGAS and flocculent activated sludge(FAS),from which AGAS is always derived,in order to provide a new strategy for the rapid cultivation and stability control of AGAS.The result showed that attachment biomass of AGAS was about 300%higher than that of FAS without the addition of metal ions.Different metal ions had different effects on the process of microbial attachment.FAS and AGAS reacted differently to the metal ions as well,and in fact,AGAS was more sensitive to the metal ions.Specifically,Ca^2+,Mg^2+,and K+could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations,Cu^2+,Fe^2+,and Zn^2+were also beneficial to the microbial attachment of FAS at low concentrations,but Cu^2+,Fe^2+,and Zn^2+greatly inhibited the attachment process of AGAS even at extremely low concentrations.In addition,the acylated homoserine lactone(AHL)-based quorum sensing system,the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions.As all these parameters had close relationships with the microbial attachment process,the microbial attachment may be affected by changes of these parameters.
基金Project supported by National Key Research and Development Program of China(2020YFC1909102)Natural Science Foundation of Inner Mongolia(2020BS05033)+1 种基金Inner Mongolia Major Basic Research Open Project(0406091701)Major Projects of Natural Science Foundation of Inner Mongolia of China(2018ZD07)。
文摘Neodymium oxyfluoride has received much attention in the fields of anionic solid electrolytes.luminescent,catalytic and magnetic materials because of its structure combined advantages of rareearth cations with F^(-)and O_(2)^(-)anions.In this work,neodynium oxyfluoride was synthesized by the reaction between neodymium oxide and four fluoride media with different fluoride ion activities.The synthesis processes in molten LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),NaF-CaF_(2)-NdF_(3)and NaF-KF-NdF_(3)are observed in situ by a confocal scanning laser microscope.The expansion of neodymium oxide particle is observed in the LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),and NaF-KF-NdF_(3)melts,and the growth of needle crystals on neodymium oxide particle is clearly observed in molten NaF-CaF_(2)-NdF_(3).Based on scanning electron microscopy(SEM)-energy dispersive X-ray spectroscopy(EDS)and X-ray diffraction(XRD)analyses of products,neodynium oxyfluoride was successfully synthesized in the four fluoride media.The neodynium oxyfluoride generated in the LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),and NaF-KF-NdF_(3)melts is a tetragonal structure.However,in molten NaF-CaF_(2)-NdF_(3),neodynium oxyfluoride with a rhombohedral structure is formed.It is suggested that the substitution of Na(Ⅰ)and Ca(Ⅱ)for Nd(Ⅲ)can transform NdOF from tetragonal structure to rhombohedral structure.The growth rate of needle crystals generated in molten NaF-CaF_(2)-NdF_(3)was calculated based on the result of a confocal scanning laser microscope,and it is found that the reaction kinetics of crystal formation is zero-order reaction.The effect of fluoride media on the structure and morphology of formed NdOF were evaluated by XRD,X-ray photoelectron spectroscopy(XPS)and SEM.The neodymium oxyfluoride prepared in the fluoride media with high fluoride ion activity has low binding energy of F 1 s.The ratio of adsorbed oxygen to lattice oxygen for neodymium oxyfluoride prepared in molten LiF-NdF_(3)is larger than those in the other three fluoride media,so it can have better catalytic performance.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China under Grant No. 51575004 and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions. The authors would like to thank School of Materials Science and Engineering of Tsinghua University for providing computing server.
文摘To elucidate the effects of physisorbed active ions on the geometries and electronic structures of hydrogenated diamond films, models of HCO3, H3O^+, and OH^- ions physisorbed on hydrogenated diamond (100) surfaces were constructed. Density functional theory was used to calculate the geometries, adsorption energies, and partial density of states. The results showed that the geometries of the hydrogenated diamond (100) surfaces all changed to different degrees after ion adsorption. Among them, the H3O^+ ion affected the geometry of the hydrogenated diamond (100) surfaces the most. This is well consistent with the results of the calculated adsorption energies, which indicated that a strong electrostatic attraction occurs between the hydrogenated diamond (100) surface and H3O^+ ions. In addition, electrons transfer significantly from the hydrogenated diamond (100) surface to the adsorbed H3O^+ ion, which induces a downward shift in the HOMO and LUMO energy levels of the H3O^+ ion. However, for active ions like OH^- and HCO3^, no dramatic change appears for the electronic structures of the adsorbed ions.
基金the support provided by China Scholarship Council, Sheng Yun-Fei College Students Scientific and Technological Innovation Fundthe National Science & Technology Pillar Program (No. 2013BAD21B03)
文摘The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb2+and Zn2+in aqueous single-metal solutions. A p H value of the metal solutions at 6.0 was beneficial to the high adsorption quantity of the biosorbent. The optimal mass ratio of the biosorbent to metal ions was found to be 2. A higher adsorption quantity of the biosorbent was achieved by keeping the reaction temperature below 55°C. Response surface methodology was applied to optimize the biosorption processes, and the developed mathematical equations showed high determination coefficients(above 0.99 for both metal ions) and insignificant lack of fit(p = 0.0838 and 0.0782 for Pb2+and Zn2+, respectively). Atomic force microscopy analyses suggested that the metal elements were adsorbed onto the biosorbent surface via electrostatic interaction. X-ray photoelectron spectroscopy analyses indicated the presence of complexation(between –NH2,-CN and metal ions) and ion-exchange(between –COOH and metal ions). The adsorption mechanisms could be the combined action of electrostatic interaction, complexation and ion-exchange between functional groups and metal ions.
基金This study was supported by the National Key R&D Program of China(nos.2017YFA0206904 and 2017YFA0206900)the National Natural Science Foundation of China(nos.21625303,21905287,51673206,and 21988102)+2 种基金the Beijing Natural Science Foundation(no.2194088)the Strategic Priority Research Program of the Chinese Academy of Science(no.XDA21010213)the Key Research Program of the Chinese Academy of Sciences(no.QYZDY-SSW-SLH014).
文摘Osmotic energy from the ocean,also called blue energy,serves as a clean,renewable,and vast energy source for the energy demands of the world.Reverse electrodialysis-based blue energy harvesting via ion-selective membranes,by the regulation and manipulation of directional ion transport,has been greatly developed recently.In particular,light has been employed to enhance directional ion transport for energy conversion through an increase in photo-induced surface charge.Here,the authors demonstrate a novel nanofluidic regulation strategy based on the phenomenon of light-induced heat-driven active ion transport through the lamellar MXene membrane.Due to the great light-induced heat effect,a temperature gradient appears as soon as illumination is applied to an off-center position,inducing an actively temperature gradient-driven ionic species transport.By employing this phenomenon,the authors conducted light-induced heat-enhanced osmotic energy conversion and doubled the osmotic energy conversion power density.This study has extended the scope of light-enhanced osmotic energy conversion and could further bring other photothermal materials into this field.Furthermore,the proposed system provides a new avenue of light-controlled ionic transport for ion gathering,desalination,and energy conversion applications.