The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba ...The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba formations formed between 248.8±1.6 and 246.5±1.3 Ma,coeval with peraluminous granites of the Qinzhou Bay Granitic Complex.The studied rhyolites and dacites are characterized by high SiO_(2),K_(2)O,and Al_(2)O_(3),and low MgO,CaO,and P_(2)O_(5) contents and are classified as high-K calc-alkaline S-type rocks,with A/CNK=0.98-1.19.The volcanic rocks are depleted in high field strength elements,e.g.,Nb,Ta,Ti,and P,and enriched in large ion lithophile elements,e.g.,Rb,K,Sr,and Ba.Although the analyzed volcanic rocks have extremely enriched zircon Hf isotopic compositions(ε_(Hf)(t)=-29.1 to-6.9),source discrimination indicators and high calculated Ti-in-zircon temperatures(798-835℃)reveal that magma derived from enriched lithospheric mantle not only provided a heat source for anatectic melting of the metasedimentary protoliths but was also an endmember component of the S-type silicic magma.The studied early Triassic volcanics are inferred to have formed immediately before closure of the Paleo-Tethys Ocean in this region,as the associated subduction would have generated an extensional setting in which the mantle-derived upwelling and volcanic activity occurred.展开更多
The Lichi volcanics are a suite of mafic-intermediate-felsic rocks and are considered coeval with the Abor volcanics(~132 Ma) of the Siang window in the Eastern Himalaya. Here, we present the first report of trachytic...The Lichi volcanics are a suite of mafic-intermediate-felsic rocks and are considered coeval with the Abor volcanics(~132 Ma) of the Siang window in the Eastern Himalaya. Here, we present the first report of trachytic rocks from the Lichi volcanics, which are exposed in the Ranga valley, along the Kimin-Yazali road section in the Eastern Himalayan Region, Northeast India. The trachytes occur in close association with sandstones of the Gondwana Group of rocks and are characterised based on field, petrographical, and geochemical investigations.These fine-grained trachytes are composed of alkali feldspar, biotite, plagioclase, sodic-amphibole, apatite, illmenite, and titanite. The REE profiles of the evolved trachytic rocks(higher SiO_(2)content) display fractionated trends. The fractionation of accessory mineral phases, like apatite and titanite, was possibly responsible for the strongly fractionated REE patterns of the evolved samples.The trachytic rocks demonstrate high apatite saturation temperatures of 988 ± 14 ℃(1σ, n = 8). The Aluminium Saturation Index(< 1.1) and binary discrimination diagrams of these peralkaline trachytes define their affinity with A-type granitoids. Elemental ratios like Y/Nb, Nb/U,and Ce/Pb signify that the Lichi trachytes are differentiated products of mantle-derived ocean island basalts. Trace elemental discrimination diagrams Th/Yb versus Nb/Yb, Y versus Nb, and Y + Nb versus Rb reflect a within-plate tectonic regime for the trachytes. From the results presented in this work, we infer that the development of rifting events during the breakup of eastern Gondwana due to the onset of Kerguelen plume activity further led to underplating of basic magma in lower crustal levels. These parental basaltic magmas underwent fractionation processes forming differentiated trachyandesites and trachytes.Taking into consideration the similarities recorded between the Lichi volcanics and Abor volcanics, this study supports the idea that Kerguelen plume activities resulted in the emplacement of these volcanics in the Eastern Himalayas.展开更多
To the south of Manzhouli,Hulunbuir,Inner Mongolia,experienced a tectonic regime transformation from compression to extension in the mid-Mesozoic.Based on systematic research of the volcanics,petrology,volcanic facies...To the south of Manzhouli,Hulunbuir,Inner Mongolia,experienced a tectonic regime transformation from compression to extension in the mid-Mesozoic.Based on systematic research of the volcanics,petrology,volcanic facies,chronology and geochemistry of rocks in the Buridun area,two stages of volcanics are identified.The first stage named the trachyte series was formed in the late Middle Jurassic(167-163 Ma),its eruption rhythm is pyroxene trachyandesite-trachyandesite-trachyte,and its origin rock is basic volcanics from thickened lower crust,with a tectonic setting in the collision orogeny after the closure of the Mongolia Okhotsk Ocean(MOO).The second stage is a bimodal volcanic rock,formed in the early Late Jurassic(163-160 Ma).The eruption rhythm of basic volcanics in this stage is basaltic andesite-basalt-olivine basalt,which comes from the metasomatized lithospheric mantle,the acidic volcanics of which being characterized by the eruption rhythm of sedimentary-explosive-overflow facies,which came from the partial melting of newly formed lower crust,and this shows the characteristics of A-type granite;the tectonic setting is extension of the lithosphere after collision and closure of the MOO.The changes in the formation age and tectonic setting of the two stages of volcanics demonstrate that the transition time from the compressive system to the extensional system south of Manzhouli is about 163 Ma.展开更多
The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki...The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.展开更多
Tephra layers in the western Philippine Sea,characterized by abundant volcanic glass shards,may provide crucial evidence on the eruption history of volcanoes and tectonic evolution of the western Pacific.A 220-ka sedi...Tephra layers in the western Philippine Sea,characterized by abundant volcanic glass shards,may provide crucial evidence on the eruption history of volcanoes and tectonic evolution of the western Pacific.A 220-ka sediment core from the Benham Rise in the western Philippine Sea offers new insights into the provenance of four intercalated tephra layers(T1–T4,in chronological order)containing either colorless or brown glass shards.Relative to primitive mantle,all glass shards are enriched in large-ion lithophile elements,such as Rb,Cs,and Pb,and depleted in high field-strength elements,such as Th,Nb,and Ta,indicating a subduction-related origin.The colorless glass shards are characterized by high SiO_(2)(>78%)and light rare earth element(LREE)contents as well as high La/Sm ratios(>9),low FeO and MgO contents(<1%),low Sr/Y(<15)and high Ba/Th ratios(>100),pointing to a rhyolitic composition and a medium-K calc-alkaline serial affinity.In contrast,the brown glass shards are characterized by lower SiO_(2)(<63%)and LREE contents,higher FeO,MgO,and CaO contents,lower La/Sm(<6)and Ba/Th(<75),and similar Sr/Y ratios(<15),indicating derivation from medium to high-K calc-alkaline andesite magma.Brown glass shards from layers T3(152 ka)and T4(172 ka)were correlated with volcanic deposits from the Taal and Laguna Caldera in the Maccolod Corridor,respectively,while the colorless glass shards from layers T1(36.5 ka)and T2(61.2 ka)were likely sourced from the Irosin Caldera in the Bicol Arc.Establishing the provenance of late Pleistocene tephra layers in the western Philippine Sea is helpful to complement a Philippine volcanic history and establish a regional tephrochronostratigraphy.展开更多
The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to E...The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to Eocene strata in the Central Myanmar Basin(CMB).The pore structure of these lithologic reservoirs is complex and rich in tuffaceous sandstone,which plays an adverse role in reservoir development in this region.To understand the development characteristics and genetic mechanism of the pyroclastic rocks within three sets of reservoirs in this area,a comprehensive analysis was conducted through borehole core observations,thin section identification,scanning electron microscope analysis,and mercury injection tests.The tuffaceous sandstone from the upper Cretaceous to the Eocene is dominated by intermediate-acid volcanic rock debris.The pyroclastic rocks exhibit evident chloritization and ironization,with residual intergranular pores being the principal type accompanied by a smaller amount of intergranular dissolved pores and intragranular dissolved pores.The highest porosity is observed in the Eocene tuffaceous sandstone,ranging from 8%to 12%.The Late Cretaceous to Paleocene sandstones exhibit lower porosity levels of only 4%-6%.These reservoirs are characterized by their low porosity and low-permeability.Despite the presence of a good source rock in this area,the volcanic debris particles filling the pores,as well as their subsequent devitrification,chloritization,and limonite mineralization,result in pore throat blockage and narrowing.The reservoirs in this area are small in size,exhibit poor reservoir connectivity and lateral continuity,and fail to meet the necessary conditions for commercial-scale hydrocarbon accumulation and migration.展开更多
Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EB...Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EBC due to its coefficient of thermal expansion(CTE)compatible with substrates and high resistance to water vapor corrosion.The target operating temperature for next-generation tur bine blades is 1400°C.Corrosion is inevitable during adhesion to molten volcanic ash,and thus,understanding the corrosion behavior o the material is crucial to its reliability.This study investigates the high-temperature corrosion behavior of sintered RE_(2)Si_(2)O_(7)(RE=Yb and Ho).Samples were prepared using a solid-state reaction and hot-press method.They were then exposed to volcanic ash at 1400°C for 224,and 48 h.After 48 h of exposure,volcanic ash did not react with Yb_(2)Si_(2)O_(7)but penetrated its interior,causing damage.Meanwhile Ho_(2)Si_(2)O_(7)was partially dissolved in the molten volcanic ash,forming a reaction zone that prevented volcanic ash melts from penetrating the interior.With increasing heat treatment time,the reaction zone expanded,and the thickness of the acicular apatite grains increased The Ca:Si ratios in the residual volcanic ash were mostly unchanged for Yb_(2)Si_(2)O_(7)but decreased considerably over time for Ho_(2)Si_(2)O_(7).Th Ca in volcanic ash was consumed and formed apatite,indicating that RE^(3+)ions with large ionic radii(Ho>Yb)easily precipitated apatit from the volcanic ash.展开更多
The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of su...The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.展开更多
To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 201...To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.展开更多
Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the o...Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China.展开更多
The Carnian Pluvial Episode(CPE)fingerprints global environmental perturbations and biological extinction on land and oceans and is potentially linked to the Wrangellia Large Igneous Province(LIP).However,the correlat...The Carnian Pluvial Episode(CPE)fingerprints global environmental perturbations and biological extinction on land and oceans and is potentially linked to the Wrangellia Large Igneous Province(LIP).However,the correlation between terrestrial environmental changes and Wrangellia volcanism in the Ordos Basin during the CPE remains poorly understood.Records of negative carbon isotopic excursions(NCIEs),mercury(Hg),Hg/TOC,and Hg enrichment factor(HgEF)from oil shales in a large-scale terrestrial Ordos Basin in the Eastern Tethys were correlated with marine and other terrestrial successions.The three significant NCIEs in the study section were consistently correlated with those in the CPE successions of Europe,the UK,and South and North China.The U-Pb geochronology indicates a Ladinian-Carnian age for the Chang 7 Member.A comprehensive overview of the geochronology,NCIE correlation,and previous bio-and chronostratigraphic frameworks shows that the Ladinian-Carnian boundary is located in the lower part of Chang 7 in the Yishicun section.HgEF may be a more reliable proxy for tracing volcanic eruptions than the Hg/TOC ratio because the accumulation rates of TOC content largely vary in terrestrial and marine successions.The records of Hg,Hg/TOC,HgEF,and NCIEs in the Ordos Basin aligned with Carnian successions worldwide and were marked by similar anomalies,indicating a global response to the Wrangellia LIP during the CPE.Anoxia,a warm-humid climate,enhancement of detrital input,and NCIEs are synchronous with the CPE interval in the Ordos Basin,which suggests that the CPE combined with the regional Qinling Orogeny should dominate the enhanced rate of terrigenous input and paleoenvironmental evolution in the Ordos Basin.展开更多
The tephra layers in multiple sediment cores from the offshore region of the Mahanadi basin in the northern Bay of Bengal were investigated for possible volcanic sources. The glass shards from those tephra layers were...The tephra layers in multiple sediment cores from the offshore region of the Mahanadi basin in the northern Bay of Bengal were investigated for possible volcanic sources. The glass shards from those tephra layers were studied for size distribution, texture, and elemental geochemistry to establish chronostratigraphic markers for regional and global Quaternary correlation. The textural features of fine-grained(silty) volcanic glasses suggest the distal source of these tephra deposits. Major element composition with elevated SiO_(2) contents ranging between75%–76% and dominance of K_(2)O(> 4.5%) over CaO(< 0.9%) suggest ashes have originated from siliceous rhyolitic melts, similar to the petrographic composition of tephra from the Toba volcano. The bulk trace element compositions of the same glass shards were comparable with those reported in the youngest Toba tephra reported elsewhere. Likewise, the LREE-dominated chondrite normalized REE profiles of tephra from the Mahanadi basin closely resemble the characteristic REE patterns in Toba ash from other parts of the Indian Ocean and thus confirmed the contribution of the youngest Toba super-eruption for this ash layers.展开更多
Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes th...Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes the formation conditions of large-and medium-sized Cretaceous volcanic oil and gas reservoirs in the Bohai Sea.Research shows that the Mesozoic large intermediate-felsic lava and intermediate-felsic composite volcanic edifices in the Bohai Sea are the material basis for the formation of large-scale volcanic reservoirs.The upper subfacies of effusive facies and cryptoexplosive breccia subfacies of volcanic conduit facies of volcanic vent-proximal facies belts are favorable for large-scale volcanic reservoir formation.Two types of efficient reservoirs,characterized by high porosity and medium to low permeability,as well as medium porosity and medium to low permeability,are the core of the formation of large-and medium-sized volcanic reservoirs.The reservoir with high porosity and medium to low permeability is formed by intermediate-felsic vesicular lava or the cryptoexplosive breccia superimposed by intensive dissolution.The reservoir with medium porosity and medium to low permeability is formed by intense tectonism superimposed by fluid dissolution.Weathering and tectonic transformation are main formation mechanisms for large and medium-sized volcanic reservoirs in the study area.The low-source“source-reservoir draping type”is the optimum source-reservoir configuration relationship for large-and medium-sized volcanic reservoirs.There exists favorable volcanic facies,efficient reservoirs and source-reservoir draping configuration relationship on the periphery of Bozhong Sag,and the large intermediate-felsic lava and intermediate-felsic composite volcanic edifices close to strike-slip faults and their branch faults are the main directions of future exploration.展开更多
This paper presents a method for retrieving optical parameters from volcanic sulfate aerosols from the AHI radiometer on board the Himawari-8 satellite.The proposed method is based on optical models for various mixtur...This paper presents a method for retrieving optical parameters from volcanic sulfate aerosols from the AHI radiometer on board the Himawari-8 satellite.The proposed method is based on optical models for various mixtures of aerosol components from volcanic clouds,including ash particles,ice crystals,water drops,and sulfate aerosol droplets.The application of multi-component optical models of various aerosol compositions allows for the optical thickness and mass loading of sulfate aerosol to be estimated in the sulfuric cloud formed after the Karymsky volcano eruption on 3 November 2021.A comprehensive analysis of the brightness temperatures of the sulfuric cloud in the infrared bands was performed,which revealed that the cloud was composed of a mixture of sulfate aerosol and water droplets.Using models of various aerosol compositions allows for the satellite-based estimation of optical parameters not only for sulfate aerosol but also for the whole aerosol mixture.展开更多
Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identi...Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identifying volcanic facies by logging curves not only provides the basis of volcanic reservoir prediction but also saves costs during exploration.The Songliao Basin is a‘fault-depression superimposed’composite basin with a typical binary filling structure.Abundant types of volcanic lithologies and facies are present in the Lishu fault depression.Volcanic activity is frequent during the sedimentary period of the Huoshiling Formation.Through systematic petrographic identification of the key exploratory well(SN165C)of the Lishu fault-depression,which is a whole-well core,it is found that the Huoshiling Formation in SN165C contains four facies and six subfacies,including the volcanic conduit facies(crypto explosive breccia subfacies),explosive facies(pyroclastic flow and thermal wave base subfacies),effusive facies(upper and lower subfacies),and volcanogenic sedimentary facies(pyroclastic sedimentary subfacies).Combining core,thin section,and logging data,the authors established identification markers and petrographic chart logging phases,and also interpreted the longitudinal variation in volcanic petro-graphic response characteristics to make the charts more applicable to this area's volcanic petrographic interpretation of the Huoshiling Formation.These charts can provide a basis for the further exploration and development of volcanic oil and gas in this area.展开更多
The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through fie...The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through field and laboratory tests.The paper analyzes the mechanism and causes of engineering geological problems caused by tropical volcanic rock and soil and puts forward measures to control subgrade slope instability by rationally determining project type,making side slope stability control and strengthening waterproofing and drainage.The“zero front slope”tunneling technology at the portal,the simplified excavation method of double-side wall heading and the cross brace construction method of arch protection within the semi-open cut row pile frame in the“mountainside”eccentrically loaded soft soil stratum are adopted to control the instability of tunnel side and front slopes,foundation pits and working faces;CFG or pipe piles shall be used to reinforce soft and expansive foundation or replacement measures shall be taken,and the scheme of blind ditch+double-layer water sealing in ballastless track section shall be put forward to prevent arching deformation of foundation;the treatment measures of CFG pile,pipe pile and vacuum combined piled preloading are adopted to improve the bearing capacity of foundation in deep soft soil section and solve the problems of settlement control and uneven settlement.These engineering countermeasures have been applied during the construction of Jakarta-Bandung HSR and achieved good results.展开更多
Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams...Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams display smooth positive trends for the Tianshan Carboniferous rift-related volcanic rocks; the isotope ratios of the silicic lavas [^87Sr/^86S(t)=0.699880.70532; eNd(t)=4.76-8.00; ^206pb/^204pb(t)=17.435-18.017; ^207Pb/^204Pb(t)=15.438-15.509; ^208Pb/^204Pb(t) = 37.075-37.723] encompass those of the basic lavas. These data suggest a genetic link between rhyolites and basalts, but are not definitive in establishing whether silicic rocks are related to basalts through fractional crystallization or partial melting. Geochemical modeling of incompatible vs. compatible elements excludes the possibility that silicic melts are generated by the melting of basaltic rocks, and indicates a derivation by fractional crystallization plus moderate assimilation of wall rocks (AFC) starting from intermediate rocks to silicic rocks. Continuous AFC from basalt to rhyolite, with small rates of crustal assimilation, best explains the geochemical data. The presence or absence of bimodal volcanism (the "Daly Gap") might be related to cooling rates of magma chambers. In central and eastern Tianshan, the crust was thinner and the cooling rates of the magma chamber within the crust were greater. These conditions resulted in a rapid fall in temperature within the magma reservoir and caused a narrow temperature interval over which intermediate melts formed, effectively reducing the volume of the intermediate melts.展开更多
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, resp...A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part (or collision zone). The determination of the eruption age of the volcanics of the Zhangjiakou Formation definitely constrains the switch period, which began in the Indosinian and finished in the Yanshanian, that is, 140-135 Ma. The switch is concretely the change from the approximate E-W Paleo-Asian tectonic system to the NE to NNE Pacific system, and the period is also the apex of a continent-continent collision and orogenesis of subduction, being consumed and eventually disappearing of the Paleo-Pacific ancient continent, and all the processes commenced in the Indosinian. While the following post-orogenic large-scale eruption in the Early Cretaceous marks the final completeness of the Paleo-Pacific structure dynamics system.展开更多
Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respec...Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respectively. A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene, in which the pre-Paleocene data dominate. The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin. Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones, and have REE features of crustal zircon. Zircon U-Pb dates of 2518-2481 Ma, 1933- 1724 Ma, and 1094-1040 Ma from the SCSV1 volcanics, and 2810-2718 Ma, 2458-2421 Ma, and 1850-993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea, well comparable with age records dated from the Cathaysia block. The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia, respectively. The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2. The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events. Their age signatures from the SCSV1 cover 266.5±3.5 Ma, 241.1±6.0 Ma, 184.0±4.2 Ma, 160.9±4.2 Ma and 102.8±2.6 Ma, and from the SCSV2 are 244±15 Ma, 158.1±3.5 Ma, 141±13 Ma and 96.3±2.1 Ma. Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement, Caledonian orogeny, and Indosinian orogeny to Yanshannian magmatism. This process can be well comparable with the tectonic evolution of South China, largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.展开更多
The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the M...The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the Marwar basin are still scarce.In this study,we report U–Pb zircon,LA-ICP-MS,and SIMS ages from the Chhoti Khatu felsic volcanic rocks,interlayered with the Jodhpur Group sandstones(Lower Marwar Supergroup).The cathodoluminescence images of the zircons indicate complex morphologies,and core-rim textures coupled with the wide range of ages indicate that they are likely inherited or in the case of thin poorly indurated ash-beds,detrital in origin.The age spectra of 68 zircon analyses from our sampling display a dominant 800–900 Ma age peak corresponding to the age of basement"Erinpura granite"rocks in the region.The youngest inherited zircon from a felsic ash layer yielded a U–Pb age of651 Ma±18 Ma that,together with previous studies and paleontological evidence,indicates a postCryogenian age for the initiation of Marwar sedimentation following a~125 Ma hiatus between the end of Malani magmatism and Marwar deposition.展开更多
基金supported by the Guangxi Natural Science Foundation Program(Grant Nos.2021GXNSFAA220077,2021GXNSFBA220063)the Natural Science Foundation of China(Grant No.42073031)。
文摘The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba formations formed between 248.8±1.6 and 246.5±1.3 Ma,coeval with peraluminous granites of the Qinzhou Bay Granitic Complex.The studied rhyolites and dacites are characterized by high SiO_(2),K_(2)O,and Al_(2)O_(3),and low MgO,CaO,and P_(2)O_(5) contents and are classified as high-K calc-alkaline S-type rocks,with A/CNK=0.98-1.19.The volcanic rocks are depleted in high field strength elements,e.g.,Nb,Ta,Ti,and P,and enriched in large ion lithophile elements,e.g.,Rb,K,Sr,and Ba.Although the analyzed volcanic rocks have extremely enriched zircon Hf isotopic compositions(ε_(Hf)(t)=-29.1 to-6.9),source discrimination indicators and high calculated Ti-in-zircon temperatures(798-835℃)reveal that magma derived from enriched lithospheric mantle not only provided a heat source for anatectic melting of the metasedimentary protoliths but was also an endmember component of the S-type silicic magma.The studied early Triassic volcanics are inferred to have formed immediately before closure of the Paleo-Tethys Ocean in this region,as the associated subduction would have generated an extensional setting in which the mantle-derived upwelling and volcanic activity occurred.
基金the DST-SERB grant vide Project No. CRG/2020/002635the CSIR-JRF fellowship No. 09/1236(11154)/2021-EMR-Ithe DST-INSPIRE fellowship No. IF210186。
文摘The Lichi volcanics are a suite of mafic-intermediate-felsic rocks and are considered coeval with the Abor volcanics(~132 Ma) of the Siang window in the Eastern Himalaya. Here, we present the first report of trachytic rocks from the Lichi volcanics, which are exposed in the Ranga valley, along the Kimin-Yazali road section in the Eastern Himalayan Region, Northeast India. The trachytes occur in close association with sandstones of the Gondwana Group of rocks and are characterised based on field, petrographical, and geochemical investigations.These fine-grained trachytes are composed of alkali feldspar, biotite, plagioclase, sodic-amphibole, apatite, illmenite, and titanite. The REE profiles of the evolved trachytic rocks(higher SiO_(2)content) display fractionated trends. The fractionation of accessory mineral phases, like apatite and titanite, was possibly responsible for the strongly fractionated REE patterns of the evolved samples.The trachytic rocks demonstrate high apatite saturation temperatures of 988 ± 14 ℃(1σ, n = 8). The Aluminium Saturation Index(< 1.1) and binary discrimination diagrams of these peralkaline trachytes define their affinity with A-type granitoids. Elemental ratios like Y/Nb, Nb/U,and Ce/Pb signify that the Lichi trachytes are differentiated products of mantle-derived ocean island basalts. Trace elemental discrimination diagrams Th/Yb versus Nb/Yb, Y versus Nb, and Y + Nb versus Rb reflect a within-plate tectonic regime for the trachytes. From the results presented in this work, we infer that the development of rifting events during the breakup of eastern Gondwana due to the onset of Kerguelen plume activity further led to underplating of basic magma in lower crustal levels. These parental basaltic magmas underwent fractionation processes forming differentiated trachyandesites and trachytes.Taking into consideration the similarities recorded between the Lichi volcanics and Abor volcanics, this study supports the idea that Kerguelen plume activities resulted in the emplacement of these volcanics in the Eastern Himalayas.
基金financially supported by the Geological Survey program of China Geological Survey(Grant Nos.DD20189613,12120115031301)National Key Research and Development Program of China(Grant No.2019YFC0605202)。
文摘To the south of Manzhouli,Hulunbuir,Inner Mongolia,experienced a tectonic regime transformation from compression to extension in the mid-Mesozoic.Based on systematic research of the volcanics,petrology,volcanic facies,chronology and geochemistry of rocks in the Buridun area,two stages of volcanics are identified.The first stage named the trachyte series was formed in the late Middle Jurassic(167-163 Ma),its eruption rhythm is pyroxene trachyandesite-trachyandesite-trachyte,and its origin rock is basic volcanics from thickened lower crust,with a tectonic setting in the collision orogeny after the closure of the Mongolia Okhotsk Ocean(MOO).The second stage is a bimodal volcanic rock,formed in the early Late Jurassic(163-160 Ma).The eruption rhythm of basic volcanics in this stage is basaltic andesite-basalt-olivine basalt,which comes from the metasomatized lithospheric mantle,the acidic volcanics of which being characterized by the eruption rhythm of sedimentary-explosive-overflow facies,which came from the partial melting of newly formed lower crust,and this shows the characteristics of A-type granite;the tectonic setting is extension of the lithosphere after collision and closure of the MOO.The changes in the formation age and tectonic setting of the two stages of volcanics demonstrate that the transition time from the compressive system to the extensional system south of Manzhouli is about 163 Ma.
文摘The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.
基金Supported by the National Natural Science Foundation of China(Nos.42076049,42376050)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42000000)the Laoshan Laboratory(No.LSKJ202204201)。
文摘Tephra layers in the western Philippine Sea,characterized by abundant volcanic glass shards,may provide crucial evidence on the eruption history of volcanoes and tectonic evolution of the western Pacific.A 220-ka sediment core from the Benham Rise in the western Philippine Sea offers new insights into the provenance of four intercalated tephra layers(T1–T4,in chronological order)containing either colorless or brown glass shards.Relative to primitive mantle,all glass shards are enriched in large-ion lithophile elements,such as Rb,Cs,and Pb,and depleted in high field-strength elements,such as Th,Nb,and Ta,indicating a subduction-related origin.The colorless glass shards are characterized by high SiO_(2)(>78%)and light rare earth element(LREE)contents as well as high La/Sm ratios(>9),low FeO and MgO contents(<1%),low Sr/Y(<15)and high Ba/Th ratios(>100),pointing to a rhyolitic composition and a medium-K calc-alkaline serial affinity.In contrast,the brown glass shards are characterized by lower SiO_(2)(<63%)and LREE contents,higher FeO,MgO,and CaO contents,lower La/Sm(<6)and Ba/Th(<75),and similar Sr/Y ratios(<15),indicating derivation from medium to high-K calc-alkaline andesite magma.Brown glass shards from layers T3(152 ka)and T4(172 ka)were correlated with volcanic deposits from the Taal and Laguna Caldera in the Maccolod Corridor,respectively,while the colorless glass shards from layers T1(36.5 ka)and T2(61.2 ka)were likely sourced from the Irosin Caldera in the Bicol Arc.Establishing the provenance of late Pleistocene tephra layers in the western Philippine Sea is helpful to complement a Philippine volcanic history and establish a regional tephrochronostratigraphy.
基金Supported by the National Natural Science Foundation of China(No.92055203)。
文摘The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to Eocene strata in the Central Myanmar Basin(CMB).The pore structure of these lithologic reservoirs is complex and rich in tuffaceous sandstone,which plays an adverse role in reservoir development in this region.To understand the development characteristics and genetic mechanism of the pyroclastic rocks within three sets of reservoirs in this area,a comprehensive analysis was conducted through borehole core observations,thin section identification,scanning electron microscope analysis,and mercury injection tests.The tuffaceous sandstone from the upper Cretaceous to the Eocene is dominated by intermediate-acid volcanic rock debris.The pyroclastic rocks exhibit evident chloritization and ironization,with residual intergranular pores being the principal type accompanied by a smaller amount of intergranular dissolved pores and intragranular dissolved pores.The highest porosity is observed in the Eocene tuffaceous sandstone,ranging from 8%to 12%.The Late Cretaceous to Paleocene sandstones exhibit lower porosity levels of only 4%-6%.These reservoirs are characterized by their low porosity and low-permeability.Despite the presence of a good source rock in this area,the volcanic debris particles filling the pores,as well as their subsequent devitrification,chloritization,and limonite mineralization,result in pore throat blockage and narrowing.The reservoirs in this area are small in size,exhibit poor reservoir connectivity and lateral continuity,and fail to meet the necessary conditions for commercial-scale hydrocarbon accumulation and migration.
基金supported by JSPS KAKENHI(No.23K19087)“Dynamic Alliance for Open Innovation Bridging Human,Environment and Materials”from the Ministry of Education,Culture,Sports,Science and Technology o f Japan(MEXT).
文摘Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EBC due to its coefficient of thermal expansion(CTE)compatible with substrates and high resistance to water vapor corrosion.The target operating temperature for next-generation tur bine blades is 1400°C.Corrosion is inevitable during adhesion to molten volcanic ash,and thus,understanding the corrosion behavior o the material is crucial to its reliability.This study investigates the high-temperature corrosion behavior of sintered RE_(2)Si_(2)O_(7)(RE=Yb and Ho).Samples were prepared using a solid-state reaction and hot-press method.They were then exposed to volcanic ash at 1400°C for 224,and 48 h.After 48 h of exposure,volcanic ash did not react with Yb_(2)Si_(2)O_(7)but penetrated its interior,causing damage.Meanwhile Ho_(2)Si_(2)O_(7)was partially dissolved in the molten volcanic ash,forming a reaction zone that prevented volcanic ash melts from penetrating the interior.With increasing heat treatment time,the reaction zone expanded,and the thickness of the acicular apatite grains increased The Ca:Si ratios in the residual volcanic ash were mostly unchanged for Yb_(2)Si_(2)O_(7)but decreased considerably over time for Ho_(2)Si_(2)O_(7).Th Ca in volcanic ash was consumed and formed apatite,indicating that RE^(3+)ions with large ionic radii(Ho>Yb)easily precipitated apatit from the volcanic ash.
文摘The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.
基金the National Key Research and Development Program of China(Grant No.2020YFA0608803)the National Natural Science Foundation of China(Grant Nos.41975107,41875092 and 42005020).
文摘To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.
基金the financial support from the National Natural Science Foundation of China(42172151,42090025,41811530094,and 41625009)the China Postdoctoral Science Foundation(2021M690204)the National Key Research and Development Program(2019YFA0708504&2023YFF0806200)。
文摘Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172109,41872113,42172108)China National Petroleum Corporation-China University of Petroleum(Beijing)Strategic Cooperation Science and Technology Project(Grant No.ZLZX2020-02)+1 种基金State's Key Project of Research and Development Plan(Grant No.2018YFA0702405)Science Foundation of China University of Petroleum(Beijing)(Grant Nos.2462020BJRC002,2462020YXZZ020)。
文摘The Carnian Pluvial Episode(CPE)fingerprints global environmental perturbations and biological extinction on land and oceans and is potentially linked to the Wrangellia Large Igneous Province(LIP).However,the correlation between terrestrial environmental changes and Wrangellia volcanism in the Ordos Basin during the CPE remains poorly understood.Records of negative carbon isotopic excursions(NCIEs),mercury(Hg),Hg/TOC,and Hg enrichment factor(HgEF)from oil shales in a large-scale terrestrial Ordos Basin in the Eastern Tethys were correlated with marine and other terrestrial successions.The three significant NCIEs in the study section were consistently correlated with those in the CPE successions of Europe,the UK,and South and North China.The U-Pb geochronology indicates a Ladinian-Carnian age for the Chang 7 Member.A comprehensive overview of the geochronology,NCIE correlation,and previous bio-and chronostratigraphic frameworks shows that the Ladinian-Carnian boundary is located in the lower part of Chang 7 in the Yishicun section.HgEF may be a more reliable proxy for tracing volcanic eruptions than the Hg/TOC ratio because the accumulation rates of TOC content largely vary in terrestrial and marine successions.The records of Hg,Hg/TOC,HgEF,and NCIEs in the Ordos Basin aligned with Carnian successions worldwide and were marked by similar anomalies,indicating a global response to the Wrangellia LIP during the CPE.Anoxia,a warm-humid climate,enhancement of detrital input,and NCIEs are synchronous with the CPE interval in the Ordos Basin,which suggests that the CPE combined with the regional Qinling Orogeny should dominate the enhanced rate of terrigenous input and paleoenvironmental evolution in the Ordos Basin.
基金We thank the Directors of CSIR-NIO and CSIR-NGRI,for supporting this studyThis work is a part of a multidisciplinary program under the aegis of the National Gas Hydrate Program(NGHP),India,on gas hydrate exploration in the Eastern continental margin of India.The incharge of IPEV operations is thanked for providing onboard technical support and facilities.This research was funded by MoES,Govt.of India.Mr.Girish Prabhu and Mr.Vijay Khedekar are thanked for XRD and SEM analyses,respectively.This is NIO contribution no.7047.
文摘The tephra layers in multiple sediment cores from the offshore region of the Mahanadi basin in the northern Bay of Bengal were investigated for possible volcanic sources. The glass shards from those tephra layers were studied for size distribution, texture, and elemental geochemistry to establish chronostratigraphic markers for regional and global Quaternary correlation. The textural features of fine-grained(silty) volcanic glasses suggest the distal source of these tephra deposits. Major element composition with elevated SiO_(2) contents ranging between75%–76% and dominance of K_(2)O(> 4.5%) over CaO(< 0.9%) suggest ashes have originated from siliceous rhyolitic melts, similar to the petrographic composition of tephra from the Toba volcano. The bulk trace element compositions of the same glass shards were comparable with those reported in the youngest Toba tephra reported elsewhere. Likewise, the LREE-dominated chondrite normalized REE profiles of tephra from the Mahanadi basin closely resemble the characteristic REE patterns in Toba ash from other parts of the Indian Ocean and thus confirmed the contribution of the youngest Toba super-eruption for this ash layers.
基金Supported by the China National Offshore Oil Corporation Limited Project(2021-KT-YXKY-03)。
文摘Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes the formation conditions of large-and medium-sized Cretaceous volcanic oil and gas reservoirs in the Bohai Sea.Research shows that the Mesozoic large intermediate-felsic lava and intermediate-felsic composite volcanic edifices in the Bohai Sea are the material basis for the formation of large-scale volcanic reservoirs.The upper subfacies of effusive facies and cryptoexplosive breccia subfacies of volcanic conduit facies of volcanic vent-proximal facies belts are favorable for large-scale volcanic reservoir formation.Two types of efficient reservoirs,characterized by high porosity and medium to low permeability,as well as medium porosity and medium to low permeability,are the core of the formation of large-and medium-sized volcanic reservoirs.The reservoir with high porosity and medium to low permeability is formed by intermediate-felsic vesicular lava or the cryptoexplosive breccia superimposed by intensive dissolution.The reservoir with medium porosity and medium to low permeability is formed by intense tectonism superimposed by fluid dissolution.Weathering and tectonic transformation are main formation mechanisms for large and medium-sized volcanic reservoirs in the study area.The low-source“source-reservoir draping type”is the optimum source-reservoir configuration relationship for large-and medium-sized volcanic reservoirs.There exists favorable volcanic facies,efficient reservoirs and source-reservoir draping configuration relationship on the periphery of Bozhong Sag,and the large intermediate-felsic lava and intermediate-felsic composite volcanic edifices close to strike-slip faults and their branch faults are the main directions of future exploration.
基金The studies were carried out using the resources of the Center for Shared Use of Scientific Equipment“Center for Processing and Storage of Scientific Data of the Far Eastern Branch of the Russian Academy of Sciences”(Sorokin et al.,2017)(Project No.075-15-2021-663).
文摘This paper presents a method for retrieving optical parameters from volcanic sulfate aerosols from the AHI radiometer on board the Himawari-8 satellite.The proposed method is based on optical models for various mixtures of aerosol components from volcanic clouds,including ash particles,ice crystals,water drops,and sulfate aerosol droplets.The application of multi-component optical models of various aerosol compositions allows for the optical thickness and mass loading of sulfate aerosol to be estimated in the sulfuric cloud formed after the Karymsky volcano eruption on 3 November 2021.A comprehensive analysis of the brightness temperatures of the sulfuric cloud in the infrared bands was performed,which revealed that the cloud was composed of a mixture of sulfate aerosol and water droplets.Using models of various aerosol compositions allows for the satellite-based estimation of optical parameters not only for sulfate aerosol but also for the whole aerosol mixture.
基金Supported by projects of the National Natural Science Foundatio n of China(Nos.41972313,41790453).
文摘Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identifying volcanic facies by logging curves not only provides the basis of volcanic reservoir prediction but also saves costs during exploration.The Songliao Basin is a‘fault-depression superimposed’composite basin with a typical binary filling structure.Abundant types of volcanic lithologies and facies are present in the Lishu fault depression.Volcanic activity is frequent during the sedimentary period of the Huoshiling Formation.Through systematic petrographic identification of the key exploratory well(SN165C)of the Lishu fault-depression,which is a whole-well core,it is found that the Huoshiling Formation in SN165C contains four facies and six subfacies,including the volcanic conduit facies(crypto explosive breccia subfacies),explosive facies(pyroclastic flow and thermal wave base subfacies),effusive facies(upper and lower subfacies),and volcanogenic sedimentary facies(pyroclastic sedimentary subfacies).Combining core,thin section,and logging data,the authors established identification markers and petrographic chart logging phases,and also interpreted the longitudinal variation in volcanic petro-graphic response characteristics to make the charts more applicable to this area's volcanic petrographic interpretation of the Huoshiling Formation.These charts can provide a basis for the further exploration and development of volcanic oil and gas in this area.
文摘The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through field and laboratory tests.The paper analyzes the mechanism and causes of engineering geological problems caused by tropical volcanic rock and soil and puts forward measures to control subgrade slope instability by rationally determining project type,making side slope stability control and strengthening waterproofing and drainage.The“zero front slope”tunneling technology at the portal,the simplified excavation method of double-side wall heading and the cross brace construction method of arch protection within the semi-open cut row pile frame in the“mountainside”eccentrically loaded soft soil stratum are adopted to control the instability of tunnel side and front slopes,foundation pits and working faces;CFG or pipe piles shall be used to reinforce soft and expansive foundation or replacement measures shall be taken,and the scheme of blind ditch+double-layer water sealing in ballastless track section shall be put forward to prevent arching deformation of foundation;the treatment measures of CFG pile,pipe pile and vacuum combined piled preloading are adopted to improve the bearing capacity of foundation in deep soft soil section and solve the problems of settlement control and uneven settlement.These engineering countermeasures have been applied during the construction of Jakarta-Bandung HSR and achieved good results.
基金support from the Land and Resources Survey Project of China(Grant nos.20011000022,200313000063)the National Natural Science Foundation of China(Grant No.40472044).
文摘Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams display smooth positive trends for the Tianshan Carboniferous rift-related volcanic rocks; the isotope ratios of the silicic lavas [^87Sr/^86S(t)=0.699880.70532; eNd(t)=4.76-8.00; ^206pb/^204pb(t)=17.435-18.017; ^207Pb/^204Pb(t)=15.438-15.509; ^208Pb/^204Pb(t) = 37.075-37.723] encompass those of the basic lavas. These data suggest a genetic link between rhyolites and basalts, but are not definitive in establishing whether silicic rocks are related to basalts through fractional crystallization or partial melting. Geochemical modeling of incompatible vs. compatible elements excludes the possibility that silicic melts are generated by the melting of basaltic rocks, and indicates a derivation by fractional crystallization plus moderate assimilation of wall rocks (AFC) starting from intermediate rocks to silicic rocks. Continuous AFC from basalt to rhyolite, with small rates of crustal assimilation, best explains the geochemical data. The presence or absence of bimodal volcanism (the "Daly Gap") might be related to cooling rates of magma chambers. In central and eastern Tianshan, the crust was thinner and the cooling rates of the magma chamber within the crust were greater. These conditions resulted in a rapid fall in temperature within the magma reservoir and caused a narrow temperature interval over which intermediate melts formed, effectively reducing the volume of the intermediate melts.
文摘A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part (or collision zone). The determination of the eruption age of the volcanics of the Zhangjiakou Formation definitely constrains the switch period, which began in the Indosinian and finished in the Yanshanian, that is, 140-135 Ma. The switch is concretely the change from the approximate E-W Paleo-Asian tectonic system to the NE to NNE Pacific system, and the period is also the apex of a continent-continent collision and orogenesis of subduction, being consumed and eventually disappearing of the Paleo-Pacific ancient continent, and all the processes commenced in the Indosinian. While the following post-orogenic large-scale eruption in the Early Cretaceous marks the final completeness of the Paleo-Pacific structure dynamics system.
基金supported by the National Natural Science Foundation of China (grant no. 41272218)the Fundamental Research Funds for the Central Universitiesthe State Key Program of the National Natural Science of China (grant no. 2011ZX05023-003)
文摘Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respectively. A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene, in which the pre-Paleocene data dominate. The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin. Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones, and have REE features of crustal zircon. Zircon U-Pb dates of 2518-2481 Ma, 1933- 1724 Ma, and 1094-1040 Ma from the SCSV1 volcanics, and 2810-2718 Ma, 2458-2421 Ma, and 1850-993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea, well comparable with age records dated from the Cathaysia block. The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia, respectively. The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2. The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events. Their age signatures from the SCSV1 cover 266.5±3.5 Ma, 241.1±6.0 Ma, 184.0±4.2 Ma, 160.9±4.2 Ma and 102.8±2.6 Ma, and from the SCSV2 are 244±15 Ma, 158.1±3.5 Ma, 141±13 Ma and 96.3±2.1 Ma. Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement, Caledonian orogeny, and Indosinian orogeny to Yanshannian magmatism. This process can be well comparable with the tectonic evolution of South China, largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.
基金JGM by the US National Science Foundation Grant EAR09-10888HRX by the National Natural Science Foundation of China Grant 41974078。
文摘The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the Marwar basin are still scarce.In this study,we report U–Pb zircon,LA-ICP-MS,and SIMS ages from the Chhoti Khatu felsic volcanic rocks,interlayered with the Jodhpur Group sandstones(Lower Marwar Supergroup).The cathodoluminescence images of the zircons indicate complex morphologies,and core-rim textures coupled with the wide range of ages indicate that they are likely inherited or in the case of thin poorly indurated ash-beds,detrital in origin.The age spectra of 68 zircon analyses from our sampling display a dominant 800–900 Ma age peak corresponding to the age of basement"Erinpura granite"rocks in the region.The youngest inherited zircon from a felsic ash layer yielded a U–Pb age of651 Ma±18 Ma that,together with previous studies and paleontological evidence,indicates a postCryogenian age for the initiation of Marwar sedimentation following a~125 Ma hiatus between the end of Malani magmatism and Marwar deposition.