The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information...The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information Retrieval(IR)systems.The Semantic Web(SW)can solve this issue by integrating data into a single platform for information exchange and knowledge retrieval.This paper focuses on exploiting the SWbase systemto provide interoperability through ontologies by combining the data concepts with ontology classes.This paper presents a 4-phase weather data model:data processing,ontology creation,SW processing,and query engine.The developed Oceanographic Weather Ontology helps to enhance data analysis,discovery,IR,and decision making.In addition to that,it also evaluates the developed ontology with other state-of-the-art ontologies.The proposed ontology’s quality has improved by 39.28%in terms of completeness,and structural complexity has decreased by 45.29%,11%and 37.7%in Precision and Accuracy.Indian Meteorological Satellite INSAT-3D’s ocean data is a typical example of testing the proposed model.The experimental result shows the effectiveness of the proposed data model and its advantages in machine understanding and IR.展开更多
The lasting evolution of computing environment, software engineering and interaction methods leads to cloud computing. Cloud computing changes the configuration mode of resources on the Internet and all kinds of resou...The lasting evolution of computing environment, software engineering and interaction methods leads to cloud computing. Cloud computing changes the configuration mode of resources on the Internet and all kinds of resources are virtualized and provided as services. Mass participation and online interaction with social annotations become usual in human daily life. People who own similar interests on the Internet may cluster naturally into scalable and boundless communities and collective intelligence will emerge. Human is taken as an intelligent computing factor, and uncertainty becomes a basic property in cloud computing. Virtualization, soft computing and granular computing will become essential features of cloud computing. Compared with the engineering technological problems of IaaS (Infrastructure as a service), PaaS (Platform as a Service) and SaaS (Software as a Service), collective intelligence and uncertain knowledge representation will be more important frontiers in cloud computing for researchers within the community of intelligence science.展开更多
Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented ...Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented programming language and relational database. Compared with general knowledge base, multi-attribute knowledge base can enhance the ability of knowledge processing and application; integrate the heterogeneous knowledge, such as model, symbol, case-based sample knowledge; and support the whole decision process by integrated reasoning.展开更多
Abstract: It was discussed that the way to reflect the internal relations between judgment and identification, the two most fundamental ways of thinking or cognition operations, during the course of the semantic netw...Abstract: It was discussed that the way to reflect the internal relations between judgment and identification, the two most fundamental ways of thinking or cognition operations, during the course of the semantic network knowledge representation processing. A new extended Petri net is defined based on qualitative mapping, which strengths the expressive ability of the feature of thinking and the mode of action of brain. A model of semantic network knowledge representation based on new Petri net is given. Semantic network knowledge has a more efficient representation and reasoning mechanism. This model not only can reflect the characteristics of associative memory in semantic network knowledge representation, but also can use Petri net to express the criterion changes and its change law of recognition judgment, especially the cognitive operation of thinking based on extraction and integration of sensory characteristics to well express the thinking transition course from quantitative change to qualitative change of human cognition.展开更多
A method of knowledge representation and learning based on fuzzy Petri nets was designed. In this way the parameters of weights, threshold value and certainty factor in knowledge model can be adjusted dynamically. The...A method of knowledge representation and learning based on fuzzy Petri nets was designed. In this way the parameters of weights, threshold value and certainty factor in knowledge model can be adjusted dynamically. The advantages of knowledge representation based on production rules and neural networks were integrated into this method. Just as production knowledge representation, this method has clear structure and specific parameters meaning. In addition, it has learning and parallel reasoning ability as neural networks knowledge representation does. The result of simulation shows that the learning algorithm can converge, and the parameters of weights, threshold value and certainty factor can reach the ideal level after training.展开更多
Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. ...Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our design, implementation,and evaluation of the ontology at its initial stage. Findings: We describe the design and initial outcomes of the ontology implementation. The evaluation results demonstrate the clinical validity of the ontology by a self-developed survey measurement. Research limitations: The proposed ontology was developed and evaluated using a small number of information sources. Presently, US data are used, but they are not essential for the ultimate structure of the ontology.Practical implications: The goal of improving patient safety can be aided through investigating patient safety reports and providing actionable knowledge to clinical practitioners.As such, constructing a domain specific ontology for patient safety reports serves as a cornerstone in information collection and text mining methods.Originality/value: The use of ontologies provides abstracted representation of semantic information and enables a wealth of applications in a reporting system. Therefore, constructing such a knowledge base is recognized as a high priority in health care.展开更多
A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block mode...A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block modeling method uses the modules of a six tuple to form a rule based solution model. Moreover, a rule based system has been designed and set up to solve the Dynamic Programming Model. This knowledge based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynamic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Programming Model can also be conveniently realized in computer.展开更多
The design scheme of an agricultural expert system based on longan and cauliflower planting techniques is presented. Using an object-oriented design and a combination of the techniques in multimedia, database, expert ...The design scheme of an agricultural expert system based on longan and cauliflower planting techniques is presented. Using an object-oriented design and a combination of the techniques in multimedia, database, expert system and artificial intelligence, an in-depth analysis and summary are made of the knowledge features of die agricultural multimedia expert system and data models involved. According to the practical problems in agricultural field, the architectures and functions of the system are designed, and some design ideas about the hybrid knowledge representation and fuzzy reasoning are proposed.展开更多
Knowledge representation is a key to the building of expert systems. The performance of knowledge representation methods directly affects the intelligence level and the problem-solving ability of the system. There are...Knowledge representation is a key to the building of expert systems. The performance of knowledge representation methods directly affects the intelligence level and the problem-solving ability of the system. There are various kinds of knowledge representation methods in ESEP3.0. In this paper, the authors introduce the knowledge representation methods, such as structure knowledge, seismological and precursory forecast knowledge, machine learning knowledge, synthetic prediction knowledge, knowledge to validate and verify certainty factors of anomalous evidence and support knowledge, etc. and propose a model for validation of certainty factors of anomalous evidence. The knowledge representation methods represent all kinds of earthquake prediction knowledge well.展开更多
This paper outlines the necessity of the knowledge representation for the geometrical shapes (KRGS). We advocate that KRGS for being powerful must contain at least three major components, namely (1) fu...This paper outlines the necessity of the knowledge representation for the geometrical shapes (KRGS). We advocate that KRGS for being powerful must contain at least three major components, namely (1) fuzzy logic scheme; (2) the machine learning technique; and (3) an integrated algebraic and logical reasoning. After arguing the need for using fuzzy expressions in spatial reasoning, then inducing the spatial graph generalized and maximal common part of the expressions is discussed. Finally, the integration of approximate references into spatial reasoning using absolute measurements is outlined. The integration here means that the satisfiability of a fuzzy spatial expression is conducted by both logical and algebraic reasoning.展开更多
Knowledge graph technology is widely applied in the domain of general knowledge reasoning with an excellent performance.For fine-grained professional fields,professional knowledge graphs can provide more accurate info...Knowledge graph technology is widely applied in the domain of general knowledge reasoning with an excellent performance.For fine-grained professional fields,professional knowledge graphs can provide more accurate information in practical industrial scenarios.Based on an aviation assembly domain-specific knowledge graph,the article constructs a joint knowledge reasoning model,which combines a named entity recognition model and a subgraph embedding learning model.When performing knowledge reasoning tasks,the two models vectorize entities,relationships and entity attributes in the same space,so as to share parameters and optimize learning efficiency.The knowledge reasoning model,which provides intelligent question answering services,is able to reduce the assembly error rate and improve the assembly efficiency.The system can accurately solve general knowledge reasoning problems in the assembly process in actual industrial scenarios of general assembly and component assembly under interference-free conditions.Finally,this paper compares the proposed knowledge reasoning model based on knowledge representation learning and the question-answering system based on large-scale pre-trained models.In the application scenario of system functional testing in general assembly,the joint model attains an accuracy rate of 95%,outperforming GPT with 78%accuracy and enhanced representation through knowledge integration with 71%accuracy.展开更多
Developed from the dynamic causality diagram (DCD) model, a new approach for knowledge representation and reasoning named as dynamic uncertain causality graph (DUCG) is presented, which focuses on the compact repr...Developed from the dynamic causality diagram (DCD) model, a new approach for knowledge representation and reasoning named as dynamic uncertain causality graph (DUCG) is presented, which focuses on the compact representation of complex uncertain causalities and efficient probabilistie inference. It is pointed out that the existing models of compact representation and inference in Bayesian Network (BN) is applicable in single-valued cases, but may not be suitable to be applied in multi-valued cases. DUCG overcomes this problem and beyond. The main features of DUCG are: 1) compactly and graphically representing complex conditional probability distributions (CPDs), regardless of whether the cases are single-valued or multi-valued; 2) able to perform exact reasoning in the case of the incomplete knowledge representation; 3) simplifying the graphical knowledge base conditional on observations before other calculations, so that the scale and complexity of problem can be reduced exponentially; 4) the efficient two-step inference algorithm consisting of (a) logic operation to find all possible hypotheses in concern for given observations and (b) the probability calculation for these hypotheses; and 5) much less relying on the parameter accuracy. An alarm system example is provided to illustrate the DUCG methodology.展开更多
Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphi...Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representa- tion model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.展开更多
Geovisualisation is a knowledge-intensive art in which both providers and users need to possess a wide range of knowledge.Current syntactic approaches to presenting visualisation information lack semantics on the one ...Geovisualisation is a knowledge-intensive art in which both providers and users need to possess a wide range of knowledge.Current syntactic approaches to presenting visualisation information lack semantics on the one hand,and on the other hand are too bespoke.Such limitations impede the transfer,interpretation,and reuse of the geovisualisation knowledge.In this paper,we propose a knowledge-based approach to formally represent geovisualisation knowledge in a semantically-enriched and machine-readable manner using Semantic Web technologies.Specifically,we represent knowledge regarding cartographic scale,data portrayal and geometry source,which are three key aspects of geovisualisation in the contemporary web mapping era,coupling ontologies and semantic rules.The knowledge base enables inference for deriving the corresponding geometries and portrayals for visualisation under different conditions.A prototype system is developed in which geospatial linked data are used as underlying data,and some geovisualisation knowledge is formalised into a knowledge base to visualise the data and provide rich semantics to users.The proposed approach can partially form the foundation for the vision of web of knowledge for geovisualisation.展开更多
Purpose:This paper compares the paradigmatic differences between knowledge organization(KO)in library and information science and knowledge representation(KR)in AI to show the convergence in KO and KR methods and appl...Purpose:This paper compares the paradigmatic differences between knowledge organization(KO)in library and information science and knowledge representation(KR)in AI to show the convergence in KO and KR methods and applications.Methodology:The literature review and comparative analysis of KO and KR paradigms is the primary method used in this paper.Findings:A key difference between KO and KR lays in the purpose of KO is to organize knowledge into certain structure for standardizing and/or normalizing the vocabulary of concepts and relations,while KR is problem-solving oriented.Differences between KO and KR are discussed based on the goal,methods,and functions.Research limitations:This is only a preliminary research with a case study as proof of concept.Practical implications:The paper articulates on the opportunities in applying KR and other AI methods and techniques to enhance the functions of KO.Originality/value:Ontologies and linked data as the evidence of the convergence of KO and KR paradigms provide theoretical and methodological support to innovate KO in the AI era.展开更多
In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS ...In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS model.KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm,then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning,then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning.Finally,through the full connection layer and sigmoid function to get the prediction ratings,and the items are sorted according to the prediction ratings to get the user’s recommendation list.KGRS is tested on the movielens-100k dataset.Compared with the related representative algorithm,including the state-of-the-art interpretable recommendation models RKGE and RippleNet,the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.展开更多
Engineering diagnosis is essential to the operation of industrial equipment.The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesiannetwork is a powerful tool for it. This paper ...Engineering diagnosis is essential to the operation of industrial equipment.The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesiannetwork is a powerful tool for it. This paper utilizes the Bayesian network to represent and reasondiagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologicstructure based on operating conditions, possible faults and corresponding symptoms. The paper alsodiscusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gasturbine diagnosis is constructed on a platform developed under a Visual C++ environment. It showsthat the Bayesian network is a powerful model for representation and reasoning of diagnosticknowledge. The three-layer structure and the approximate algorithm are effective also.展开更多
In this papert a brief survey on knowledge-based animation techniques is given.Then a VideoStream-based Knowledge Representation Model (VSKRM) for Joint Objects is presented which includes the knowledge representation...In this papert a brief survey on knowledge-based animation techniques is given.Then a VideoStream-based Knowledge Representation Model (VSKRM) for Joint Objects is presented which includes the knowledge representation of: Graphic Object,Action and VideoStream. Next a general description of the UI framework of a system is given based on the VSKRM model. Finally a conclusion is reached.展开更多
This paper proposes an approach for functional knowledge representation based on problem reduction,which represents the organization of problem-solving activities in two levels:reduction and reasoning.The former makes...This paper proposes an approach for functional knowledge representation based on problem reduction,which represents the organization of problem-solving activities in two levels:reduction and reasoning.The former makes the functional plans for problem-solving while the latter constructs functional units, called handlers,for executing subproblems designated by these plans.This approach emphasizes that the representation of domain knowledge should be closely combined with(rather than separated from)its use therefore provides a set of reasoning-level primitives to construct handlers and formulate the control strate- gies for executing them.As reduction-level primitives,handlers are used to construct handler-associative networks,which become the executable representation of problem-reduction graphs,in order to realize the problem-solving methods suited to domain features.Besides,handlers and their control slots can be used to focus the attention of knowledge acquisition and reasoning control.展开更多
This paper deals with knowledge representation of ESEP (Expert System for Earthqauke Prediction). Attending the characteristics of the knowledge in earthquake prediction domain, production representation and procedura...This paper deals with knowledge representation of ESEP (Expert System for Earthqauke Prediction). Attending the characteristics of the knowledge in earthquake prediction domain, production representation and procedural representation are connected in the knowledge repesentation model of ESEP named ESEP/K, and three new ways of evidence conbination are proposed for production rules besides 'AND' and 'OR'.展开更多
基金This work is financially supported by the Ministry of Earth Science(MoES),Government of India,(Grant.No.MoES/36/OOIS/Extra/45/2015),URL:https://www.moes.gov.in。
文摘The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information Retrieval(IR)systems.The Semantic Web(SW)can solve this issue by integrating data into a single platform for information exchange and knowledge retrieval.This paper focuses on exploiting the SWbase systemto provide interoperability through ontologies by combining the data concepts with ontology classes.This paper presents a 4-phase weather data model:data processing,ontology creation,SW processing,and query engine.The developed Oceanographic Weather Ontology helps to enhance data analysis,discovery,IR,and decision making.In addition to that,it also evaluates the developed ontology with other state-of-the-art ontologies.The proposed ontology’s quality has improved by 39.28%in terms of completeness,and structural complexity has decreased by 45.29%,11%and 37.7%in Precision and Accuracy.Indian Meteorological Satellite INSAT-3D’s ocean data is a typical example of testing the proposed model.The experimental result shows the effectiveness of the proposed data model and its advantages in machine understanding and IR.
基金supported by National Key Basic Research Program of China (973 Program) under Grant No.2007CB310804China Post-doctoral Science Foundation under Grants No.20090460107, 201003794
文摘The lasting evolution of computing environment, software engineering and interaction methods leads to cloud computing. Cloud computing changes the configuration mode of resources on the Internet and all kinds of resources are virtualized and provided as services. Mass participation and online interaction with social annotations become usual in human daily life. People who own similar interests on the Internet may cluster naturally into scalable and boundless communities and collective intelligence will emerge. Human is taken as an intelligent computing factor, and uncertainty becomes a basic property in cloud computing. Virtualization, soft computing and granular computing will become essential features of cloud computing. Compared with the engineering technological problems of IaaS (Infrastructure as a service), PaaS (Platform as a Service) and SaaS (Software as a Service), collective intelligence and uncertain knowledge representation will be more important frontiers in cloud computing for researchers within the community of intelligence science.
基金Supported by National Natural Science Foundation of China(No.70271002)
文摘Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented programming language and relational database. Compared with general knowledge base, multi-attribute knowledge base can enhance the ability of knowledge processing and application; integrate the heterogeneous knowledge, such as model, symbol, case-based sample knowledge; and support the whole decision process by integrated reasoning.
文摘Abstract: It was discussed that the way to reflect the internal relations between judgment and identification, the two most fundamental ways of thinking or cognition operations, during the course of the semantic network knowledge representation processing. A new extended Petri net is defined based on qualitative mapping, which strengths the expressive ability of the feature of thinking and the mode of action of brain. A model of semantic network knowledge representation based on new Petri net is given. Semantic network knowledge has a more efficient representation and reasoning mechanism. This model not only can reflect the characteristics of associative memory in semantic network knowledge representation, but also can use Petri net to express the criterion changes and its change law of recognition judgment, especially the cognitive operation of thinking based on extraction and integration of sensory characteristics to well express the thinking transition course from quantitative change to qualitative change of human cognition.
文摘A method of knowledge representation and learning based on fuzzy Petri nets was designed. In this way the parameters of weights, threshold value and certainty factor in knowledge model can be adjusted dynamically. The advantages of knowledge representation based on production rules and neural networks were integrated into this method. Just as production knowledge representation, this method has clear structure and specific parameters meaning. In addition, it has learning and parallel reasoning ability as neural networks knowledge representation does. The result of simulation shows that the learning algorithm can converge, and the parameters of weights, threshold value and certainty factor can reach the ideal level after training.
基金supported by a grant from AHRQ, 1R01HS022895a patient safety grant from the University of Texas system, #156374
文摘Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our design, implementation,and evaluation of the ontology at its initial stage. Findings: We describe the design and initial outcomes of the ontology implementation. The evaluation results demonstrate the clinical validity of the ontology by a self-developed survey measurement. Research limitations: The proposed ontology was developed and evaluated using a small number of information sources. Presently, US data are used, but they are not essential for the ultimate structure of the ontology.Practical implications: The goal of improving patient safety can be aided through investigating patient safety reports and providing actionable knowledge to clinical practitioners.As such, constructing a domain specific ontology for patient safety reports serves as a cornerstone in information collection and text mining methods.Originality/value: The use of ontologies provides abstracted representation of semantic information and enables a wealth of applications in a reporting system. Therefore, constructing such a knowledge base is recognized as a high priority in health care.
文摘A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block modeling method uses the modules of a six tuple to form a rule based solution model. Moreover, a rule based system has been designed and set up to solve the Dynamic Programming Model. This knowledge based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynamic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Programming Model can also be conveniently realized in computer.
基金Supported by the National Natural Science Foundation of China (No. 700400D1).
文摘The design scheme of an agricultural expert system based on longan and cauliflower planting techniques is presented. Using an object-oriented design and a combination of the techniques in multimedia, database, expert system and artificial intelligence, an in-depth analysis and summary are made of the knowledge features of die agricultural multimedia expert system and data models involved. According to the practical problems in agricultural field, the architectures and functions of the system are designed, and some design ideas about the hybrid knowledge representation and fuzzy reasoning are proposed.
文摘Knowledge representation is a key to the building of expert systems. The performance of knowledge representation methods directly affects the intelligence level and the problem-solving ability of the system. There are various kinds of knowledge representation methods in ESEP3.0. In this paper, the authors introduce the knowledge representation methods, such as structure knowledge, seismological and precursory forecast knowledge, machine learning knowledge, synthetic prediction knowledge, knowledge to validate and verify certainty factors of anomalous evidence and support knowledge, etc. and propose a model for validation of certainty factors of anomalous evidence. The knowledge representation methods represent all kinds of earthquake prediction knowledge well.
文摘This paper outlines the necessity of the knowledge representation for the geometrical shapes (KRGS). We advocate that KRGS for being powerful must contain at least three major components, namely (1) fuzzy logic scheme; (2) the machine learning technique; and (3) an integrated algebraic and logical reasoning. After arguing the need for using fuzzy expressions in spatial reasoning, then inducing the spatial graph generalized and maximal common part of the expressions is discussed. Finally, the integration of approximate references into spatial reasoning using absolute measurements is outlined. The integration here means that the satisfiability of a fuzzy spatial expression is conducted by both logical and algebraic reasoning.
基金supported by the National Natural Science Foundation of China(Grant Nos.52275020,62293514,and 91948301).
文摘Knowledge graph technology is widely applied in the domain of general knowledge reasoning with an excellent performance.For fine-grained professional fields,professional knowledge graphs can provide more accurate information in practical industrial scenarios.Based on an aviation assembly domain-specific knowledge graph,the article constructs a joint knowledge reasoning model,which combines a named entity recognition model and a subgraph embedding learning model.When performing knowledge reasoning tasks,the two models vectorize entities,relationships and entity attributes in the same space,so as to share parameters and optimize learning efficiency.The knowledge reasoning model,which provides intelligent question answering services,is able to reduce the assembly error rate and improve the assembly efficiency.The system can accurately solve general knowledge reasoning problems in the assembly process in actual industrial scenarios of general assembly and component assembly under interference-free conditions.Finally,this paper compares the proposed knowledge reasoning model based on knowledge representation learning and the question-answering system based on large-scale pre-trained models.In the application scenario of system functional testing in general assembly,the joint model attains an accuracy rate of 95%,outperforming GPT with 78%accuracy and enhanced representation through knowledge integration with 71%accuracy.
基金supported by Guangdong Nuclear Power Group of China under Contract No. CNPRI-ST10P005the National Natural Science Foundation of China under Grant No. 60643006
文摘Developed from the dynamic causality diagram (DCD) model, a new approach for knowledge representation and reasoning named as dynamic uncertain causality graph (DUCG) is presented, which focuses on the compact representation of complex uncertain causalities and efficient probabilistie inference. It is pointed out that the existing models of compact representation and inference in Bayesian Network (BN) is applicable in single-valued cases, but may not be suitable to be applied in multi-valued cases. DUCG overcomes this problem and beyond. The main features of DUCG are: 1) compactly and graphically representing complex conditional probability distributions (CPDs), regardless of whether the cases are single-valued or multi-valued; 2) able to perform exact reasoning in the case of the incomplete knowledge representation; 3) simplifying the graphical knowledge base conditional on observations before other calculations, so that the scale and complexity of problem can be reduced exponentially; 4) the efficient two-step inference algorithm consisting of (a) logic operation to find all possible hypotheses in concern for given observations and (b) the probability calculation for these hypotheses; and 5) much less relying on the parameter accuracy. An alarm system example is provided to illustrate the DUCG methodology.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51175200).
文摘Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representa- tion model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.
基金This work was supported by China Scholarship Council and Lund University.
文摘Geovisualisation is a knowledge-intensive art in which both providers and users need to possess a wide range of knowledge.Current syntactic approaches to presenting visualisation information lack semantics on the one hand,and on the other hand are too bespoke.Such limitations impede the transfer,interpretation,and reuse of the geovisualisation knowledge.In this paper,we propose a knowledge-based approach to formally represent geovisualisation knowledge in a semantically-enriched and machine-readable manner using Semantic Web technologies.Specifically,we represent knowledge regarding cartographic scale,data portrayal and geometry source,which are three key aspects of geovisualisation in the contemporary web mapping era,coupling ontologies and semantic rules.The knowledge base enables inference for deriving the corresponding geometries and portrayals for visualisation under different conditions.A prototype system is developed in which geospatial linked data are used as underlying data,and some geovisualisation knowledge is formalised into a knowledge base to visualise the data and provide rich semantics to users.The proposed approach can partially form the foundation for the vision of web of knowledge for geovisualisation.
文摘Purpose:This paper compares the paradigmatic differences between knowledge organization(KO)in library and information science and knowledge representation(KR)in AI to show the convergence in KO and KR methods and applications.Methodology:The literature review and comparative analysis of KO and KR paradigms is the primary method used in this paper.Findings:A key difference between KO and KR lays in the purpose of KO is to organize knowledge into certain structure for standardizing and/or normalizing the vocabulary of concepts and relations,while KR is problem-solving oriented.Differences between KO and KR are discussed based on the goal,methods,and functions.Research limitations:This is only a preliminary research with a case study as proof of concept.Practical implications:The paper articulates on the opportunities in applying KR and other AI methods and techniques to enhance the functions of KO.Originality/value:Ontologies and linked data as the evidence of the convergence of KO and KR paradigms provide theoretical and methodological support to innovate KO in the AI era.
基金supported by the National Science Foundation of China Grant No.61762092“Dynamic multi-objective requirement optimization based on transfer learning”,No.61762089+2 种基金“The key research of high order tensor decomposition in distributed environment”the Open Foundation of the Key Laboratory in Software Engineering of Yunnan Province,Grant No.2017SE204,”Research on extracting software feature models using transfer learning”.
文摘In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms,we propose an efficient KGRS model.KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm,then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning,then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning.Finally,through the full connection layer and sigmoid function to get the prediction ratings,and the items are sorted according to the prediction ratings to get the user’s recommendation list.KGRS is tested on the movielens-100k dataset.Compared with the related representative algorithm,including the state-of-the-art interpretable recommendation models RKGE and RippleNet,the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.
文摘Engineering diagnosis is essential to the operation of industrial equipment.The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesiannetwork is a powerful tool for it. This paper utilizes the Bayesian network to represent and reasondiagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologicstructure based on operating conditions, possible faults and corresponding symptoms. The paper alsodiscusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gasturbine diagnosis is constructed on a platform developed under a Visual C++ environment. It showsthat the Bayesian network is a powerful model for representation and reasoning of diagnosticknowledge. The three-layer structure and the approximate algorithm are effective also.
文摘In this papert a brief survey on knowledge-based animation techniques is given.Then a VideoStream-based Knowledge Representation Model (VSKRM) for Joint Objects is presented which includes the knowledge representation of: Graphic Object,Action and VideoStream. Next a general description of the UI framework of a system is given based on the VSKRM model. Finally a conclusion is reached.
基金This research was supported by National High-tech Program(863 Program)of P.R.China.
文摘This paper proposes an approach for functional knowledge representation based on problem reduction,which represents the organization of problem-solving activities in two levels:reduction and reasoning.The former makes the functional plans for problem-solving while the latter constructs functional units, called handlers,for executing subproblems designated by these plans.This approach emphasizes that the representation of domain knowledge should be closely combined with(rather than separated from)its use therefore provides a set of reasoning-level primitives to construct handlers and formulate the control strate- gies for executing them.As reduction-level primitives,handlers are used to construct handler-associative networks,which become the executable representation of problem-reduction graphs,in order to realize the problem-solving methods suited to domain features.Besides,handlers and their control slots can be used to focus the attention of knowledge acquisition and reasoning control.
文摘This paper deals with knowledge representation of ESEP (Expert System for Earthqauke Prediction). Attending the characteristics of the knowledge in earthquake prediction domain, production representation and procedural representation are connected in the knowledge repesentation model of ESEP named ESEP/K, and three new ways of evidence conbination are proposed for production rules besides 'AND' and 'OR'.