Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant inf...Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant influence on the formation of special geomorphology and the distribution of geological hazards at the eastern edge of the Tibetan Plateau.The Anninghe fault zone is a key part of the Y-shaped fault pattern in the Sichuan-Yunnan block of China.In this paper,high-resolution topographic data,multitemporal remote sensing images,numerical calculations,seismic records,and comprehensive field investigations were employed to study the landslide distribution along the active part of the Anninghe.The influence of active faults on the lithology,rock mass structures and slope stress fields were also studied.The results show that the faults within the Anninghe fault zone have damaged the structure and integrity of the slope rock mass,reduced the mechanical strength of the rock mass and controlled the slope failure modes.The faults have also controlled the stress field,the distribution of the plastic strain zone and the maximum shear strain zone of the slope,thus have promoted the formation and evolution of landslides.We find that the studied landslides are linearly distributed along the Anninghe fault zone,and more than 80%of these landslides are within 2–3 km of the fault rupture zone.Moreover,the Anninghe fault zone provides abundant substance for landslides or debris flows.This paper presents four types of sliding mode control of the Anninghe fault zone,e.g.,constituting the whole landslide body,controlling the lateral boundary of the landslide,controlling the crown of the landslide,and constituting the toe of the landslide.The results presented merit close attention as a valuable reference source for local infrastructure planning and engineering projects.展开更多
Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Becau...Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Because the suspected seismogenic faults on the surface, distribution of aftershocks and focal mechanism solutions are not consistent, it remains difficult to determine what is the real causal fault or seismogenic structure for this event. Actually, it may imply the complicity of the seismic source at depth. In addition, the distribution of the co- seismic landslides also exhibits some diffusion that is different from general eases, likely associated with the seismic focus structure.展开更多
In this study, we used high-resolution optical satellite images on the Google Earth platform to map large-scale landslides in Xianyang City, Shaanxi Province, China. After mapping, a comprehensive and detailed large-s...In this study, we used high-resolution optical satellite images on the Google Earth platform to map large-scale landslides in Xianyang City, Shaanxi Province, China. After mapping, a comprehensive and detailed large-scale landslide inventory that contains 2 924 large-scale landslides was obtained. We analyzed the spatial distribu-tion of landslides with seven influencing factors, including elevation, slope angle, aspect, curvature, lithology, distance to a river, and distance to the fault. Landslide Number, Landslide Area, Landslide Number Density(LND), and Landslide Area Percentage(LAP) were selected as indexes for the spatial distribution analysis. The results show that the number and area of landslides in the elevation range of 1 000–1 200 m is the highest. The highest number of landslides was observed in the slope angle of 25°–30°. North-facing slopes are prone to sliding. The area and number of landslides are the largest when the slope curvature ranges from-1.28 to 0. The LND and LAP reach their maxima when the slope curvature is less than-2.56. Areas covered by the Tertiary stratum with weakened fine-grained sandstone and siltstone show the highest LND and LAP values. Regarding distance to a river, the LAP peaks in the range of 300–600 m, whereas the LND peaks in an area larger than 2100 m. The values of LND and LNP rise as the distance from the faults increases, except for the locations 30 km away from active faults. This phenomenon is because active faults in this area pass through the plain areas, while landslides mostly occur in mountainous areas. The cataloging of landslide development in Xianyang City provides a significant scientific foundation for future research on landslides. In addition, the spatial distribution results are useful for landslide hazard prevention decisions and provide valuable references in this area.展开更多
The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, usi...The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, using remote sensing technology and geographic information system(GIS)technology, 1481 landslides were identified along the Bhote Koshi river. Correlations between the spatial distribution of landslides with slope gradient and lithology were analyzed. The power-law relationship of the size distribution of earthquake-induced landslides was examined in both the Higher Himalaya and Lesser Himalaya. Possible reasons for the variability of the power exponent were explored by examining differences in the geological situations of these areas. Multi-threshold cellular automata were introduced to model the complexity of system components. Most of the landslides occurred at slope gradients of 30°–40°, and the landslide density was positively correlated with slope gradient. Landslides in hard rock areas were more common than in soft rock areas. The cumulative number-area distribution of landslides induced by the Gorkha earthquake exhibited a negative power-law relationship, but the power exponents were different: 1.13 in the Higher Himalaya, 1.36 and Lesser Himalaya. Furthermore,the geological conditions were more complex and varied in the Lesser Himalaya than in the Higher Himalaya, and the cellular automata simulation results indicated that, as the complexity of system components increased, the power exponent increased.Therefore, the variability of the power exponent of landslide size distribution should ascribe to the complexity of geological situations in the Bhote Koshi river watershed.展开更多
In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of...In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of assessment techniques:the physical mechanism-based method(PMBM),which considers the landslide dynamics and has the advantages of effectiveness and proactivity;the environmental factor-based method(EFBM),which integrates the environmental conditions and has high accuracy.In order to obtain the spatial distribution of landslide hazards in the affected area with near realtime and high accuracy,this study proposed to combine the PMBM based on Newmark method with EFBM to form Newmark-Information value model(N-IV),Newmark-Logic regression model(N-LR)and Newmark-Support Vector Machine model(N-SVM)for seismic landslide hazard assessment on the Ludian Mw 6.2 earthquake in Yunnan.The predicted spatial hazard distribution was compared with the actual cataloged landslide inventory,and frequency ratio(FR),and area under the curve(AUC)metrics were used to verify the model's plausibility,performance,and accuracy.According to the findings,the model's accuracy is ranked as follows:N-SVM>N-LR>N-IV>Newmark.With an AUC value of 0.937,the linked N-SVM was discovered to have the best performance.The research results indicate that the physics-environmental coupled model(PECM)exhibits accuracy gains of 46.406%(N-SVM),30.625%(N-LR),and 22.816%(N-IV)when compared to the conventional Newmark technique.It shows varied degrees of improvement from 2.577%to 12.446%when compared to the single EFBM.The study also uses the Ms 6.8 Luding earthquake to evaluate the model,showcasing its trustworthy in forecasting power and steady generalization.Since the suggested PECM in this study can adapt to complicated earthquake-induced landslides situations,it aims to serve as a reference for future research in a similar field,as well as to help with emergency planning and response in earthquakeprone regions with landslides.展开更多
China is a country with a large population as well as frequent landslides. The formation and distribution of landslides in China are determined by its special topography, complex geological environment, active earthqu...China is a country with a large population as well as frequent landslides. The formation and distribution of landslides in China are determined by its special topography, complex geological environment, active earthquake environment and unusual climate features. This paper analyzes the main features and distribution of 200 catastrophic landslides that occurred in China since 1900. The relationships among the distribution of landslides and topographic conditions, geological structure, climate features and strong earthquake environment are analyzed. The features of landslide-triggering factors and critical conditions in different areas have also been considered. Based on the above-mentioned work, the authors have undertaken the studies of landslide susceptibility assessment. The study is performed according to the topographic and geological features, which are the main triggering factors that affect the landslides. The China’s mainland can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Considering the number of life loss and extent of property loss caused by landslides in those 12 zones, the risk evaluation results are listed as follows: 2 extremely high-risk zones, 5 high-risk zones, 2 medium-risk zones and 3 low-risk zones. Taking the number of life loss caused by landslides as the standard of risk level, the paper also analyzes the change in landslide risk level and main risk control measures in China since 1990s. Based on the risk level of landslides in other countries or regions, the acceptable landslide risk level in China has been proposed.展开更多
Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide I...Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide Inventory Database(Cs LID) by utilizing Google's public cloud computing platform. Firstly, Cs LID(Landslide Inventory Database) compiles a total of 1221 historical landslide events spanning the years 1949-2011 from relevant data sources. Secondly, the Cs LID is further broken down into six zones for characterizing landslide cause-effect, spatiotemporal distribution, fatalities, and socioeconomic impacts based on the geological environment and terrain. The results show that among all the six zones, zone V, located in Qinba and Southwest Mountainous Area is the most active landslide hotspot with the highest landslide hazard in China. Additionally, the Google public cloud computing platform enables the Cs LID to be easily accessible, visually interactive, and with the capability of allowing new data input to dynamically augment the database. This work developed a cyber-landslide inventory and used it to analyze the landslide temporal-spatial distribution in China.展开更多
A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can...A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.展开更多
The Chenyulan Stream in Central Taiwan follows the Chenyulan fault line which is a major boundary fault in Taiwan. In recent years, many destructive landslides have occurred in the Chenyulan Creek Basin after heavy ra...The Chenyulan Stream in Central Taiwan follows the Chenyulan fault line which is a major boundary fault in Taiwan. In recent years, many destructive landslides have occurred in the Chenyulan Creek Basin after heavy rainfall accompanied by several strong typhoons. Three examples of landslide distributions in the Chenyulan Creek Basin, before and after 1996 and after 2004 are analyzed. The box dimension and two-point correlation dimension are employed to describe the landslide area size distribution and distance distribution between every two landslides, respectively. It is found that the number of landslides increased in this period. However, the average landslide area decreased. The correlation dimension gradually increased from 1.15 to 1.32 during this period(before and after 1996 and after 2004). This implies that the landslide distribution in the Chenyulan Creek Basin has become diffuse and extensive. The box dimension value shows the degree of the landslide density occupied in a space. The box dimension also increased from 0.3 to 0.69 during this period. The increasing box dimension means that the landslide presented in this creek basin has gradually increased. This indicates that the slopes of this creek basin have become more unstable and susceptible.展开更多
Landslides are among the most serious of geohazards in the Xi'an Region, Shaanxi, China, and are responsible for extensive human and property loss. In order to understand the distribution of landslides and assess the...Landslides are among the most serious of geohazards in the Xi'an Region, Shaanxi, China, and are responsible for extensive human and property loss. In order to understand the distribution of landslides and assess their associated hazards in this region, we used a combination of frequency analysis, logistic analysis, and Geographic Information System (GIS) analysis, with consideration of the spatial distribution of landslides. Using the GIS approach, the five key factors of surface topography, including slope gradient, topographic wetness index (TWI), height difference, profile curvature and slope aspect, were considered. First, the distribution and frequency of landslides were considered in relation to all of the five factors in each of three sub-regions susceptible to landslides (Qin Mountain, Li Mountain, and Loess Tableland). Secondly, each factor's influence was deter- mined by a logistic regression method, and the relative importance of each of these independent variables was evaluated. Finally, a landslide susceptibility map was generated using GIS tools. Locations that had recorded landslides were used to validate the results of the landslide susceptibility map and the accuracy obtained was above 84%. The validation proved that there is sufficient agreement between the susceptibility map and existing records of landslide occurrences. The logistic regression model produced acceptable results (the areas under the Receiver Operating Characteristics (ROC) curve were 0.865, 0.841, and 0.924 in the Qin Mountain, Li Mountain and Loess Tableland). We are confident that the results of this study can be useful in preliminary planning for land use, particularly for construction work in high-risk areas.展开更多
基金supported by China Geological Survey Projects(Grant No.20160272,20211379)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0904)Sichuan Science and Technology Program of China(Grant No.2020YFS0296).
文摘Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant influence on the formation of special geomorphology and the distribution of geological hazards at the eastern edge of the Tibetan Plateau.The Anninghe fault zone is a key part of the Y-shaped fault pattern in the Sichuan-Yunnan block of China.In this paper,high-resolution topographic data,multitemporal remote sensing images,numerical calculations,seismic records,and comprehensive field investigations were employed to study the landslide distribution along the active part of the Anninghe.The influence of active faults on the lithology,rock mass structures and slope stress fields were also studied.The results show that the faults within the Anninghe fault zone have damaged the structure and integrity of the slope rock mass,reduced the mechanical strength of the rock mass and controlled the slope failure modes.The faults have also controlled the stress field,the distribution of the plastic strain zone and the maximum shear strain zone of the slope,thus have promoted the formation and evolution of landslides.We find that the studied landslides are linearly distributed along the Anninghe fault zone,and more than 80%of these landslides are within 2–3 km of the fault rupture zone.Moreover,the Anninghe fault zone provides abundant substance for landslides or debris flows.This paper presents four types of sliding mode control of the Anninghe fault zone,e.g.,constituting the whole landslide body,controlling the lateral boundary of the landslide,controlling the crown of the landslide,and constituting the toe of the landslide.The results presented merit close attention as a valuable reference source for local infrastructure planning and engineering projects.
基金supported by the National Natural Science Foundation of China(grant No.41572194)the Institute of Geology,China Earthquake Administration(grant No.IGCEA1604)the National Key Basic Research Program of China(grant No.2013CB733205)
文摘Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Because the suspected seismogenic faults on the surface, distribution of aftershocks and focal mechanism solutions are not consistent, it remains difficult to determine what is the real causal fault or seismogenic structure for this event. Actually, it may imply the complicity of the seismic source at depth. In addition, the distribution of the co- seismic landslides also exhibits some diffusion that is different from general eases, likely associated with the seismic focus structure.
基金This study was supported by the National Institute of Natural Hazards,Ministry of Emergency Management of China(ZDJ 2021-12)the National Key Research and Development Program of China(2021YFB3901205).
文摘In this study, we used high-resolution optical satellite images on the Google Earth platform to map large-scale landslides in Xianyang City, Shaanxi Province, China. After mapping, a comprehensive and detailed large-scale landslide inventory that contains 2 924 large-scale landslides was obtained. We analyzed the spatial distribu-tion of landslides with seven influencing factors, including elevation, slope angle, aspect, curvature, lithology, distance to a river, and distance to the fault. Landslide Number, Landslide Area, Landslide Number Density(LND), and Landslide Area Percentage(LAP) were selected as indexes for the spatial distribution analysis. The results show that the number and area of landslides in the elevation range of 1 000–1 200 m is the highest. The highest number of landslides was observed in the slope angle of 25°–30°. North-facing slopes are prone to sliding. The area and number of landslides are the largest when the slope curvature ranges from-1.28 to 0. The LND and LAP reach their maxima when the slope curvature is less than-2.56. Areas covered by the Tertiary stratum with weakened fine-grained sandstone and siltstone show the highest LND and LAP values. Regarding distance to a river, the LAP peaks in the range of 300–600 m, whereas the LND peaks in an area larger than 2100 m. The values of LND and LNP rise as the distance from the faults increases, except for the locations 30 km away from active faults. This phenomenon is because active faults in this area pass through the plain areas, while landslides mostly occur in mountainous areas. The cataloging of landslide development in Xianyang City provides a significant scientific foundation for future research on landslides. In addition, the spatial distribution results are useful for landslide hazard prevention decisions and provide valuable references in this area.
基金supported by the National Natural Science Foundation of China (Grant No. 41571004)National Program on Key Research Project of China (Grant No. 2016YFC0802206)+1 种基金Key Laboratory Foundation of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences (Grant No. KLMHESP-17-03)the Fundamental Research Funds for the Central Universities of China (Grant No. 2682016CX003)
文摘The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, using remote sensing technology and geographic information system(GIS)technology, 1481 landslides were identified along the Bhote Koshi river. Correlations between the spatial distribution of landslides with slope gradient and lithology were analyzed. The power-law relationship of the size distribution of earthquake-induced landslides was examined in both the Higher Himalaya and Lesser Himalaya. Possible reasons for the variability of the power exponent were explored by examining differences in the geological situations of these areas. Multi-threshold cellular automata were introduced to model the complexity of system components. Most of the landslides occurred at slope gradients of 30°–40°, and the landslide density was positively correlated with slope gradient. Landslides in hard rock areas were more common than in soft rock areas. The cumulative number-area distribution of landslides induced by the Gorkha earthquake exhibited a negative power-law relationship, but the power exponents were different: 1.13 in the Higher Himalaya, 1.36 and Lesser Himalaya. Furthermore,the geological conditions were more complex and varied in the Lesser Himalaya than in the Higher Himalaya, and the cellular automata simulation results indicated that, as the complexity of system components increased, the power exponent increased.Therefore, the variability of the power exponent of landslide size distribution should ascribe to the complexity of geological situations in the Bhote Koshi river watershed.
基金financially supported by the National Natural Science Foundation of China(41977213)The Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0906)+3 种基金Fundamental Research Funds for the Central Universities(XJ2021KJZK039)Sichuan Provincial Transportation Science and Technology Project(2021-A-03)China Road&Bridge Corporation(P220447)Research on the mechanism of dynamic disaster and key technology of protection for slope engineering in the high-intensity red layer area of Heilongtan(R110121H01092)。
文摘In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of assessment techniques:the physical mechanism-based method(PMBM),which considers the landslide dynamics and has the advantages of effectiveness and proactivity;the environmental factor-based method(EFBM),which integrates the environmental conditions and has high accuracy.In order to obtain the spatial distribution of landslide hazards in the affected area with near realtime and high accuracy,this study proposed to combine the PMBM based on Newmark method with EFBM to form Newmark-Information value model(N-IV),Newmark-Logic regression model(N-LR)and Newmark-Support Vector Machine model(N-SVM)for seismic landslide hazard assessment on the Ludian Mw 6.2 earthquake in Yunnan.The predicted spatial hazard distribution was compared with the actual cataloged landslide inventory,and frequency ratio(FR),and area under the curve(AUC)metrics were used to verify the model's plausibility,performance,and accuracy.According to the findings,the model's accuracy is ranked as follows:N-SVM>N-LR>N-IV>Newmark.With an AUC value of 0.937,the linked N-SVM was discovered to have the best performance.The research results indicate that the physics-environmental coupled model(PECM)exhibits accuracy gains of 46.406%(N-SVM),30.625%(N-LR),and 22.816%(N-IV)when compared to the conventional Newmark technique.It shows varied degrees of improvement from 2.577%to 12.446%when compared to the single EFBM.The study also uses the Ms 6.8 Luding earthquake to evaluate the model,showcasing its trustworthy in forecasting power and steady generalization.Since the suggested PECM in this study can adapt to complicated earthquake-induced landslides situations,it aims to serve as a reference for future research in a similar field,as well as to help with emergency planning and response in earthquakeprone regions with landslides.
基金Supported by the National Basic Research Program ‘‘973’’ Project of China (2008CB425801)the Team Research Fund of State Key Laboratory of Geohazard Prevention and Geoenviroment Protection
文摘China is a country with a large population as well as frequent landslides. The formation and distribution of landslides in China are determined by its special topography, complex geological environment, active earthquake environment and unusual climate features. This paper analyzes the main features and distribution of 200 catastrophic landslides that occurred in China since 1900. The relationships among the distribution of landslides and topographic conditions, geological structure, climate features and strong earthquake environment are analyzed. The features of landslide-triggering factors and critical conditions in different areas have also been considered. Based on the above-mentioned work, the authors have undertaken the studies of landslide susceptibility assessment. The study is performed according to the topographic and geological features, which are the main triggering factors that affect the landslides. The China’s mainland can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Considering the number of life loss and extent of property loss caused by landslides in those 12 zones, the risk evaluation results are listed as follows: 2 extremely high-risk zones, 5 high-risk zones, 2 medium-risk zones and 3 low-risk zones. Taking the number of life loss caused by landslides as the standard of risk level, the paper also analyzes the change in landslide risk level and main risk control measures in China since 1990s. Based on the risk level of landslides in other countries or regions, the acceptable landslide risk level in China has been proposed.
基金funded by National Natural Science Foundation (Grant No. 41501458)National Natural Science Foundation (Grant No. 41201380)+4 种基金National Basic Research Program of China: (Grant No. 2013CB733204)Key Laboratory of Mining Spatial Information Technology of NASMG (KLM201309)Science Program of Shanghai Normal University (SK201525)sponsored by Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development, project 2013LASW-A09, project SKHL1310the Center of Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai, China
文摘Landslide inventory plays an important role in recording landslide events and showing their temporal-spatial distribution. This paper describes the development, visualization, and analysis of a China's Landslide Inventory Database(Cs LID) by utilizing Google's public cloud computing platform. Firstly, Cs LID(Landslide Inventory Database) compiles a total of 1221 historical landslide events spanning the years 1949-2011 from relevant data sources. Secondly, the Cs LID is further broken down into six zones for characterizing landslide cause-effect, spatiotemporal distribution, fatalities, and socioeconomic impacts based on the geological environment and terrain. The results show that among all the six zones, zone V, located in Qinba and Southwest Mountainous Area is the most active landslide hotspot with the highest landslide hazard in China. Additionally, the Google public cloud computing platform enables the Cs LID to be easily accessible, visually interactive, and with the capability of allowing new data input to dynamically augment the database. This work developed a cyber-landslide inventory and used it to analyze the landslide temporal-spatial distribution in China.
基金supported by the National Natural Science Foundation of China under Grant No. 60377021partially supported by Program for New Century Excellent Talents in University under Grant. No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.
文摘The Chenyulan Stream in Central Taiwan follows the Chenyulan fault line which is a major boundary fault in Taiwan. In recent years, many destructive landslides have occurred in the Chenyulan Creek Basin after heavy rainfall accompanied by several strong typhoons. Three examples of landslide distributions in the Chenyulan Creek Basin, before and after 1996 and after 2004 are analyzed. The box dimension and two-point correlation dimension are employed to describe the landslide area size distribution and distance distribution between every two landslides, respectively. It is found that the number of landslides increased in this period. However, the average landslide area decreased. The correlation dimension gradually increased from 1.15 to 1.32 during this period(before and after 1996 and after 2004). This implies that the landslide distribution in the Chenyulan Creek Basin has become diffuse and extensive. The box dimension value shows the degree of the landslide density occupied in a space. The box dimension also increased from 0.3 to 0.69 during this period. The increasing box dimension means that the landslide presented in this creek basin has gradually increased. This indicates that the slopes of this creek basin have become more unstable and susceptible.
文摘Landslides are among the most serious of geohazards in the Xi'an Region, Shaanxi, China, and are responsible for extensive human and property loss. In order to understand the distribution of landslides and assess their associated hazards in this region, we used a combination of frequency analysis, logistic analysis, and Geographic Information System (GIS) analysis, with consideration of the spatial distribution of landslides. Using the GIS approach, the five key factors of surface topography, including slope gradient, topographic wetness index (TWI), height difference, profile curvature and slope aspect, were considered. First, the distribution and frequency of landslides were considered in relation to all of the five factors in each of three sub-regions susceptible to landslides (Qin Mountain, Li Mountain, and Loess Tableland). Secondly, each factor's influence was deter- mined by a logistic regression method, and the relative importance of each of these independent variables was evaluated. Finally, a landslide susceptibility map was generated using GIS tools. Locations that had recorded landslides were used to validate the results of the landslide susceptibility map and the accuracy obtained was above 84%. The validation proved that there is sufficient agreement between the susceptibility map and existing records of landslide occurrences. The logistic regression model produced acceptable results (the areas under the Receiver Operating Characteristics (ROC) curve were 0.865, 0.841, and 0.924 in the Qin Mountain, Li Mountain and Loess Tableland). We are confident that the results of this study can be useful in preliminary planning for land use, particularly for construction work in high-risk areas.