期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-Level Max-Margin Analysis for Semantic Classification of Satellite Images
1
作者 HU Fan XIA Gui-Song SUN Hong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第1期47-54,共8页
The performance of scene classification of satellite images strongly relies on the discriminative power of the low-level and mid-level feature representation. This paper presents a novel approach, named multi-level ma... The performance of scene classification of satellite images strongly relies on the discriminative power of the low-level and mid-level feature representation. This paper presents a novel approach, named multi-level max-margin analysis (M 3 DA) for semantic classification for high-resolution satellite images. In our M 3 DA model, the maximum entropy discrimination latent Dirichlet allocation (MedLDA) model is applied to learn the topic-level features first, and then based on a bag-of-words repre- sentation of low-level local image features, the large margin nearest neighbor (LMNN) classifier is used to optimize a multiple soft label composed of word-level features (generated by SVM classifier) and topic-level features. The categorization performances on 21-class land-use dataset have demonstrated that the proposed model in multi-level max-margin scheme can distinguish different categories of land-use scenes reasonably. 展开更多
关键词 satellite image classification topic model maximum entropy discrimination latent Dirichlet allocation large margin nearest neighbor classifier multi-level max-margin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部