This paper relates to a typical computer numerical control (CNC) machine, model FDXNC 128, and analyzes the payoff period quantitatively and forecasts the future maintenance cost and the evaluation of the economic be...This paper relates to a typical computer numerical control (CNC) machine, model FDXNC 128, and analyzes the payoff period quantitatively and forecasts the future maintenance cost and the evaluation of the economic benefit by using Life Cycle Cost (LCC) method and grey theory. The discussion shows conclusions that are beneficial to the production, management, and decision making of the enterprise.展开更多
The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achie...The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.展开更多
Upon infecting a host cell,the reticulate body(RB)form of the Chlamydia bacteria simply proliferates by binary fission for an extended period.Available data show only RB units in the infected cells 20 hours post infec...Upon infecting a host cell,the reticulate body(RB)form of the Chlamydia bacteria simply proliferates by binary fission for an extended period.Available data show only RB units in the infected cells 20 hours post infection(hpi),spanning nearly half way through the development cycle.With data collected every 4 hpi,conversion to the elementary body(EB)form begins abruptly at a rapid rate sometime around 24 hpi.By modeling proliferation and conversion as simple birth and death processes,it has been shown that the optimal strategy for maximizing the total(mean)EB population at host cell lysis time is a bang-bang control qualitatively replicating the observed conversion activities.However,the simple birth and death model for the RB proliferation and conversion to EB deviates in a significant way from the available data on the evolution of the RB population after the onset of RB-to-EB conversion.By working with a more refined model that takes into account a small size threshold eligibility requirement for conversion noted in the available data,we succeed in removing the deficiency of the previous models on the evolution of the RB population without affecting the optimal bang-bang conversion strategy.展开更多
Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments s...Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.展开更多
Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz...Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.展开更多
Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the producti...Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
A high-performance all-inorganic magnesium-lithium chloride complex(MLCC)electrolyte is synthesized by a simple room-temperature reaction of LiCl with MgCl_(2) in tetrahydrofuran(THF)solvent.Molecular dynamics simulat...A high-performance all-inorganic magnesium-lithium chloride complex(MLCC)electrolyte is synthesized by a simple room-temperature reaction of LiCl with MgCl_(2) in tetrahydrofuran(THF)solvent.Molecular dynamics simulation,density functional theory calculation,Raman spectroscopy,and nuclear magnetic resonance spectroscopy reveal that the formation of[Mg_(x)Li_(y)Cl_(2x+y)·nTHF]complex solvation structure significantly lowers the coordination number of THF in the first solvation sheath of Mg^(2+),which significantly enhances its de-solvation kinetics.The MLCC electrolyte presents a stable electrochemical window up to 3.1 V(vs Mg/Mg^(2+))and enables reversible cycling of Mg metal deposition/stripping with an outstanding Coulombic efficiency up to 99%at current densities as high as 10 mA cm^(-2).Utilizing the MLCC electrolyte,a Mg/Mo_(6)S_(8) full cell can be cycled for over 10000 cycles with a superior capacity retention of 85 mA h g^(-1) under an ultrahigh rate of 50 C(1 C=128.8 mA g^(-1)).The facile synthesis of highperformance MLCC electrolyte provides a promising solution for future practical magnesium batteries.展开更多
The inquiry process of traditional medical equipment maintenance management is complex,which has a negative impact on the efficiency and accuracy of medical equipment maintenance management and results in a significan...The inquiry process of traditional medical equipment maintenance management is complex,which has a negative impact on the efficiency and accuracy of medical equipment maintenance management and results in a significant amount of wasted time and resources.To properly predict the failure of medical equipment,a method for failure life cycle prediction of medical equipment was developed.The system is divided into four modules:the whole life cycle management module constructs the life cycle data set of medical devices from the three parts of the management in the early stage,the middle stage,and the later stage;the status detection module monitors the main operation data of the medical device components through the normal value of the relevant sensitive data in the whole life cycle management module;and the main function of the fault diagnosis module is based on the normal value of the relevant sensitive data in the whole life cycle management module.The inference machine diagnoses the operation data of the equipment;the fault prediction module constructs a fine prediction system based on the least square support vector machine algorithm and uses the AFS-ABC algorithm to optimize the model to obtain the optimal model with the regularized parameters and width parameters;the optimal model is then used to predict the failure of medical equipment.Comparative experiments are designed to determine whether or not the design system is effective.The results demonstrate that the suggested system accurately predicts the breakdown of ECG diagnostic equipment and incubators and has a high level of support and dependability.The design system has the minimum prediction error and the quickest program execution time compared to the comparison system.Hence,the design system is able to accurately predict the numerous causes and types of medical device failure.展开更多
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe...The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results.展开更多
Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in ...Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in the tobacco industry’s production chain,and using data provided by a cigarette factory in China we conduct a life cycle assessment to account for the carbon footprint of cigar production in cigarette factories.The results of the assessment show that factory air conditioning is the most important contributor to the environmental load of the cigar manufacturing process,while electricity is the key factor that contributes the greatest envi‐ronmental load across all of the processes in the product life cycle.In addition,packaging,including small boxes and cigarette cartons,has a significant impact on the industry’s environmental footprint due to its use of raw materials.We find the carbon footprint of the entire production process for cigar products to be 383.59 kg CO_(2) eq.Based on our findings,we suggest ways to optimize cigar/cigarette factory processes to re‐duce carbon emissions that can help to promote sustainable development in related industries.展开更多
The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side react...The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side reactions that consume Li inventory.In this work,Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn_(2)O_(4).Li_(1.06)Mn_(1.94-x)Zr_xO_4(x=0,0.01,0.02,0.04)have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries(LIB).Li_(1.06)Mn_(1.92)Zr_(0.02)O_4 is superior cathode material with a high capacity of 122 m Ah/g at 1-C rate;long cycle stability,98.39%retention after 100 cycles at 1-C rate,excellent high rate performance 107.1 m Ah/g at 10-C rate,and high temperature performance 97.39%retention after 60 cycles.These are thought to be related to Zr doping effectively stabilizing the spinel LiMn_(2)O_(4),by forming stronger Zr–O bonds in the octahedron,suppressing the Jahn–Teller effect,thus improving electrochemical performance.展开更多
This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life...This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems.展开更多
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ...Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.展开更多
A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th...A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.展开更多
In recent years,the compact development of high-density cities has sparked ongoing interest in healthy urban environments and public well-being.This study examines the relationship between cycling behaviors and the bu...In recent years,the compact development of high-density cities has sparked ongoing interest in healthy urban environments and public well-being.This study examines the relationship between cycling behaviors and the built environment of streets in Tiantongyuan Community,a typical high-density area in Beijing,China.By observing street spaces and summarizing residents’travel modes and behaviors,the study evaluates the impact of street design on cycling habits.In order to reveal the riding behavior characteristics of residents in different time periods and different street spaces,tools such as track recording APPs and the Gopro Motion Camera are employed to collect street view pictures and riding track data comprehensively,analyzing the various travel purposes of residents in Tiantongyuan community and the riding OD activity tracks of the main entrances and exits of the community.Meanwhile,by conducting the questionnaire survey of residents’travel demands and OD data of Baidu,and utilizing geographic information system(GIS)for data visualization,this study further investigates the distribution characteristics of cycling hotspots,cycling paths and cycling space,accurately identifies the cycling life circle of this community based on the spatial and temporal scales,and further puts forward the optimization strategy of the cycling network.Some cycling-friendly street space optimization strategies are suggested to deeply analyze the mechanism of the built environment of street space in high-density communities on the cycling activities and health of urban residents,with a view to provide accurate data support for the renewal of street cycling space.展开更多
For a clear understanding of how to foster necessary attributes of partnerships that promote a closer relationship for achieving outsourcing success,this paper tries to explore the role of interaction.Based on empiric...For a clear understanding of how to foster necessary attributes of partnerships that promote a closer relationship for achieving outsourcing success,this paper tries to explore the role of interaction.Based on empirical data from a logistics and procurement flat system outsourcing case and earlier research,the industrial network approach and the international marketing and purchasing interaction model are used to analyze the nature of interaction in a three-phased outsourcing life cycle,particularly,characteristics and activities of the transition phase are identified.The findings reveal that developing a relationship between partners requires an industrial network perspective.Improving the key aspects of interaction,information and knowledge sharing,communication and collaborative participation,involved in the important events of three phases would contribute to enhance the relationships performance.The key aspects of interaction should take place among the network actors and not just between buyers and vendors.展开更多
Social achievement in the world is dependent to a great extent on the development of mineral resources. A changing pattern of the Life Cycle in mineral consumption, with a general pattern of introduction, growth, sta...Social achievement in the world is dependent to a great extent on the development of mineral resources. A changing pattern of the Life Cycle in mineral consumption, with a general pattern of introduction, growth, stability and decline, is seen as a determinant factor not only to the transformation of industrial structure, but also to the infrastructural construction, industrial location, the spatial organization of urban development as well as regional environmental protection.展开更多
Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and de...Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and developing laws of deflection, rutting and cracking are compared among the perpetual pavement with the rich binder layer (RBL), the perpetual pavement without the RBL, and the conventional semi-rigid asphalt pavement in the past eight years after opening for traffic. Economical evaluation is conducted via life cycle cost analysis (LCCA). Based on the performance comparison and LCCA analysis, sections with the RBL have good crack resistance, but they are not very satisfactory in the aspect of permanent deformation; the conventional semi-rigid asphalt pavement is the least economic one due to requiring more frequent maintenance. Research results show that the perpetual pavement without RBL is a more appropriate structure for the test site.展开更多
In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatm...In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.展开更多
文摘This paper relates to a typical computer numerical control (CNC) machine, model FDXNC 128, and analyzes the payoff period quantitatively and forecasts the future maintenance cost and the evaluation of the economic benefit by using Life Cycle Cost (LCC) method and grey theory. The discussion shows conclusions that are beneficial to the production, management, and decision making of the enterprise.
基金supported by the National Key Research and Development Programs(2021YFB3704201 and 2021YFB3700902).
文摘The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.
文摘Upon infecting a host cell,the reticulate body(RB)form of the Chlamydia bacteria simply proliferates by binary fission for an extended period.Available data show only RB units in the infected cells 20 hours post infection(hpi),spanning nearly half way through the development cycle.With data collected every 4 hpi,conversion to the elementary body(EB)form begins abruptly at a rapid rate sometime around 24 hpi.By modeling proliferation and conversion as simple birth and death processes,it has been shown that the optimal strategy for maximizing the total(mean)EB population at host cell lysis time is a bang-bang control qualitatively replicating the observed conversion activities.However,the simple birth and death model for the RB proliferation and conversion to EB deviates in a significant way from the available data on the evolution of the RB population after the onset of RB-to-EB conversion.By working with a more refined model that takes into account a small size threshold eligibility requirement for conversion noted in the available data,we succeed in removing the deficiency of the previous models on the evolution of the RB population without affecting the optimal bang-bang conversion strategy.
文摘Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.
文摘Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.
文摘Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
基金supported by the National Natural Science Foundation of China(NSFCU1832218)the Beijing Advanced Innovation Center for Future Chip(ICFC).
文摘A high-performance all-inorganic magnesium-lithium chloride complex(MLCC)electrolyte is synthesized by a simple room-temperature reaction of LiCl with MgCl_(2) in tetrahydrofuran(THF)solvent.Molecular dynamics simulation,density functional theory calculation,Raman spectroscopy,and nuclear magnetic resonance spectroscopy reveal that the formation of[Mg_(x)Li_(y)Cl_(2x+y)·nTHF]complex solvation structure significantly lowers the coordination number of THF in the first solvation sheath of Mg^(2+),which significantly enhances its de-solvation kinetics.The MLCC electrolyte presents a stable electrochemical window up to 3.1 V(vs Mg/Mg^(2+))and enables reversible cycling of Mg metal deposition/stripping with an outstanding Coulombic efficiency up to 99%at current densities as high as 10 mA cm^(-2).Utilizing the MLCC electrolyte,a Mg/Mo_(6)S_(8) full cell can be cycled for over 10000 cycles with a superior capacity retention of 85 mA h g^(-1) under an ultrahigh rate of 50 C(1 C=128.8 mA g^(-1)).The facile synthesis of highperformance MLCC electrolyte provides a promising solution for future practical magnesium batteries.
文摘The inquiry process of traditional medical equipment maintenance management is complex,which has a negative impact on the efficiency and accuracy of medical equipment maintenance management and results in a significant amount of wasted time and resources.To properly predict the failure of medical equipment,a method for failure life cycle prediction of medical equipment was developed.The system is divided into four modules:the whole life cycle management module constructs the life cycle data set of medical devices from the three parts of the management in the early stage,the middle stage,and the later stage;the status detection module monitors the main operation data of the medical device components through the normal value of the relevant sensitive data in the whole life cycle management module;and the main function of the fault diagnosis module is based on the normal value of the relevant sensitive data in the whole life cycle management module.The inference machine diagnoses the operation data of the equipment;the fault prediction module constructs a fine prediction system based on the least square support vector machine algorithm and uses the AFS-ABC algorithm to optimize the model to obtain the optimal model with the regularized parameters and width parameters;the optimal model is then used to predict the failure of medical equipment.Comparative experiments are designed to determine whether or not the design system is effective.The results demonstrate that the suggested system accurately predicts the breakdown of ECG diagnostic equipment and incubators and has a high level of support and dependability.The design system has the minimum prediction error and the quickest program execution time compared to the comparison system.Hence,the design system is able to accurately predict the numerous causes and types of medical device failure.
基金Fund Project in 2020,China(No.KKZ3202052058)and the support of Scientific Research Fund from Yunnan Education Department in China(No.2022J0064).
文摘The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results.
基金supported by Shandong Natural Science Founda‐tion[Grant No.ZR2023MD079]Shandong Province Social Science Planning Research Project[Grant No.22CKRJ04]+2 种基金Taishan Scholar Project[Grant No.tsqn202103010]Department of Science and Tech‐nology of Shandong Province[Grant No.2021SFGC0904-05]Zaozhuang Science and Technology Bureau[Grant No.2021GH22].
文摘Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in the tobacco industry’s production chain,and using data provided by a cigarette factory in China we conduct a life cycle assessment to account for the carbon footprint of cigar production in cigarette factories.The results of the assessment show that factory air conditioning is the most important contributor to the environmental load of the cigar manufacturing process,while electricity is the key factor that contributes the greatest envi‐ronmental load across all of the processes in the product life cycle.In addition,packaging,including small boxes and cigarette cartons,has a significant impact on the industry’s environmental footprint due to its use of raw materials.We find the carbon footprint of the entire production process for cigar products to be 383.59 kg CO_(2) eq.Based on our findings,we suggest ways to optimize cigar/cigarette factory processes to re‐duce carbon emissions that can help to promote sustainable development in related industries.
基金research on high power flexible battery in all sea depth(Grant No.2020-XXXX-XX-246-00)。
文摘The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side reactions that consume Li inventory.In this work,Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn_(2)O_(4).Li_(1.06)Mn_(1.94-x)Zr_xO_4(x=0,0.01,0.02,0.04)have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries(LIB).Li_(1.06)Mn_(1.92)Zr_(0.02)O_4 is superior cathode material with a high capacity of 122 m Ah/g at 1-C rate;long cycle stability,98.39%retention after 100 cycles at 1-C rate,excellent high rate performance 107.1 m Ah/g at 10-C rate,and high temperature performance 97.39%retention after 60 cycles.These are thought to be related to Zr doping effectively stabilizing the spinel LiMn_(2)O_(4),by forming stronger Zr–O bonds in the octahedron,suppressing the Jahn–Teller effect,thus improving electrochemical performance.
基金the financial support of the National Natural Science Foundation of China(U2268208)Science and Technology Program of China National Railway Group Co.,Ltd.(N2022×037).
文摘This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems.
基金supported by the National Natural Science Foundation of China (No.62173281,52377217,U23A20651)Sichuan Science and Technology Program (No.24NSFSC0024,23ZDYF0734,23NSFSC1436)+2 种基金Dazhou City School Cooperation Project (No.DZXQHZ006)Technopole Talent Summit Project (No.KJCRCFH08)Robert Gordon University。
文摘Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.
基金supported by the National Natural Science Foundation of China(51834008,52022109,52274307,and 21804319)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010,2462020YXZZ019 and 2462020YXZZ016)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.
文摘In recent years,the compact development of high-density cities has sparked ongoing interest in healthy urban environments and public well-being.This study examines the relationship between cycling behaviors and the built environment of streets in Tiantongyuan Community,a typical high-density area in Beijing,China.By observing street spaces and summarizing residents’travel modes and behaviors,the study evaluates the impact of street design on cycling habits.In order to reveal the riding behavior characteristics of residents in different time periods and different street spaces,tools such as track recording APPs and the Gopro Motion Camera are employed to collect street view pictures and riding track data comprehensively,analyzing the various travel purposes of residents in Tiantongyuan community and the riding OD activity tracks of the main entrances and exits of the community.Meanwhile,by conducting the questionnaire survey of residents’travel demands and OD data of Baidu,and utilizing geographic information system(GIS)for data visualization,this study further investigates the distribution characteristics of cycling hotspots,cycling paths and cycling space,accurately identifies the cycling life circle of this community based on the spatial and temporal scales,and further puts forward the optimization strategy of the cycling network.Some cycling-friendly street space optimization strategies are suggested to deeply analyze the mechanism of the built environment of street space in high-density communities on the cycling activities and health of urban residents,with a view to provide accurate data support for the renewal of street cycling space.
文摘For a clear understanding of how to foster necessary attributes of partnerships that promote a closer relationship for achieving outsourcing success,this paper tries to explore the role of interaction.Based on empirical data from a logistics and procurement flat system outsourcing case and earlier research,the industrial network approach and the international marketing and purchasing interaction model are used to analyze the nature of interaction in a three-phased outsourcing life cycle,particularly,characteristics and activities of the transition phase are identified.The findings reveal that developing a relationship between partners requires an industrial network perspective.Improving the key aspects of interaction,information and knowledge sharing,communication and collaborative participation,involved in the important events of three phases would contribute to enhance the relationships performance.The key aspects of interaction should take place among the network actors and not just between buyers and vendors.
文摘Social achievement in the world is dependent to a great extent on the development of mineral resources. A changing pattern of the Life Cycle in mineral consumption, with a general pattern of introduction, growth, stability and decline, is seen as a determinant factor not only to the transformation of industrial structure, but also to the infrastructural construction, industrial location, the spatial organization of urban development as well as regional environmental protection.
基金The Science and Technology Project of Jiangsu Provincial Communications Department(No.7621000078)
文摘Pavement performance and economic efficiency are researched on the perpetual test pavement of Yijiang-Suzhou Express Highway in Jiangsu province, China. Test sections were continuously monitored. The conditions and developing laws of deflection, rutting and cracking are compared among the perpetual pavement with the rich binder layer (RBL), the perpetual pavement without the RBL, and the conventional semi-rigid asphalt pavement in the past eight years after opening for traffic. Economical evaluation is conducted via life cycle cost analysis (LCCA). Based on the performance comparison and LCCA analysis, sections with the RBL have good crack resistance, but they are not very satisfactory in the aspect of permanent deformation; the conventional semi-rigid asphalt pavement is the least economic one due to requiring more frequent maintenance. Research results show that the perpetual pavement without RBL is a more appropriate structure for the test site.
基金Project(07dz12028) supported by the Science Program of Science and Technology Commission of Shanghai Municipality,China
文摘In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.