A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltag...A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltage and current data.The loop and nodal equations comparing faulted phase with non faulted phase of two parallel lines are introduced in the fault location estimation models,in which the source impedance of a remote end is not involved.The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated,therefore precise algorithms of locating fault are derived.The algorithm is demonstrated by digital computer simulations.展开更多
In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based o...In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.展开更多
The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network...The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network.In order to enhance the safety and reliability of power distribution,this paper focuses on the analysis of faults in the 10kV distribution network caused by natural factors,operational factors,human factors,and equipment factors.It elucidates the various hazards resulting from distribution network faults and proposes corresponding preventive measures for different types of faults in the 10kV distribution network.The aim is to mitigate or reduce the impact of distribution network faults,ensuring the safe and stable operation of the distribution system.展开更多
In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special d...A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.展开更多
An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparin...An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.展开更多
Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impeda...Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impedance andthe fault resistance.The distributed parameter model and the modal transformationare also employed.Depending on modal transformation,the coupled equations of the lines are converted intodecoupled ones.Inthis way,the mutual coupling effects between adjacent circuits of the lines are eliminatedandtherefore an accurate fault location can be achieved.The proposed methodis tested via digital simulationusing EMTP in conjunction with MATLAB.The test results corroborate the high accuracy of the proposedmethod.展开更多
This paper introduced correlation method to locate transmission line fault.First it described the principle of transmission line fault location based on traveling waves.The principle of correlation analysis is introdu...This paper introduced correlation method to locate transmission line fault.First it described the principle of transmission line fault location based on traveling waves.The principle of correlation analysis is introduced,then the method using correlation analysis in fault location is given.Transmission line model is established with EMTP-ATP.Basing on the model,some kinds of fault are simulated.The feasibility of this algorithm is proved based on simulation results.By comparing with the classical wavelet analysis,this paper gave the advantages of this algorithm in two cases:noise influence suppression and accuracy of near distance fault location.Experiment is established to simulate transmission line grounding fault.The experiment result showed the correlation algorithm's validity.All the analysis result indicated that the correlation algorithm have a high precision.展开更多
The results of T-Line Traveling Wave Fault Location is easily influenced by the wave arrival time and traveling wave propagation velocity;it proposes that the traveling wave uses wavelet transform to extract the modul...The results of T-Line Traveling Wave Fault Location is easily influenced by the wave arrival time and traveling wave propagation velocity;it proposes that the traveling wave uses wavelet transform to extract the modulus maxima of breakdown voltage, to confirm the time of the traveling wave reaching the three-terminal line. The speed of the traveling wave reaching three terminals is confirmed by the structural parameters of the transmission line. We apply the arrival time and propagation velocity to the T-type traveling wave fault location algorithm. Different transmission line distance select the corresponding algorithm, excluding the impact of fault branches and in some cases ranging accuracy, the failure dead zone will not appear. After MATLAB simulation analysis, the algorithm analysis is clear;the range accuracy is high, so that it can meet the requirements of fault location.展开更多
Fault detection and diagnosis for pneumatic system of automatic productionline are studied. An expert system using fuzzy-neural network and pneumatic circuit fault diagnosisinstrument are deigned. The mathematical mod...Fault detection and diagnosis for pneumatic system of automatic productionline are studied. An expert system using fuzzy-neural network and pneumatic circuit fault diagnosisinstrument are deigned. The mathematical model of various pneumatic faults and experimental deviceare built. In the end, some experiments are done, which shows that the expert system usingfuzzy-neural network can diagnose fast and truly fault of pneumatic circuit.展开更多
An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutin...An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.展开更多
Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission line...Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission lines. The proposed approach is capable of identifying the faulted circuit of a parallel transmission line by checking the estimated fault location and fault resistance. Voltage and current measurements from only one of the terminals of the faulty line are used. No pre-fault data are required for the estimation. The lumped parameter line model considering shunt capacitance is utilized for the derivation of the algorithm. It’s assumed that line parameters are known and transmission lines are fully transposed. The method is applicable to all types of faults. It’s evinced by evaluation studies that the proposed algorithm can correctly determine the faulted circuit in most cases. For exceptional cases, the current waveforms during the fault can be used to help identify the faulted circuit. The proposed algorithm generates quite accurate fault location estimates, and may be suitable for distance relaying.展开更多
When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is...When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system.展开更多
Diexi earthquake(M7.5)in 1933 is a great event that occurred at the east border of Qinghai- Xizang Plateau in the 20th century.There are obviously different opinions about the shape ofisoseismal lines and the genetic ...Diexi earthquake(M7.5)in 1933 is a great event that occurred at the east border of Qinghai- Xizang Plateau in the 20th century.There are obviously different opinions about the shape ofisoseismal lines and the genetic fault of this earthquke.Based on the study of the newlyfound north-south trending active fault and ground fissures of Diexi earthquake,this papertends to hold that,as the southward extension of Miujiang fault,this north-south trendingactive fault might be the genetic fault of this event.展开更多
Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occu...Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.展开更多
The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capabili...The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capability of online as well as offline testable digital circuits for both permanent and transient faults, during the design stage of the circuits. This paper presents a technique for transient and permanent fault injection at the VHDL level description of both combinational and sequential digital circuits. Access to all VHDL blocks a system is straight forward using a specially designed single fault injection block. This capability of inserting transient and permanent faults should help in evaluating the testability of a digital system before it is actually implemented.展开更多
Wide-open V-shaped conjugate strike-slip faults in Asia are typically related to extrusion tectonics. However, the tectonic model based on the slip-line theory of plasticity has some critical problems associated with ...Wide-open V-shaped conjugate strike-slip faults in Asia are typically related to extrusion tectonics. However, the tectonic model based on the slip-line theory of plasticity has some critical problems associated with it. The conjugate sets of slip-lines in plane deformation, according to the theory of plasticity should be normal to each another but, in reality, the angles between the conjugate strike-slip faults, which are regarded as slip-lines in extrusion tectonics in the eastern Mediterranean, Tibet-middle Asia, China and the Indochina Peninsular regions, are always more than 90° (on average -110°) in the direction of contraction. Another problem is that the slip-line theory fails to explain how, in some cases, e.g., in the Anatolian area in the eastern Mediterranean, the extrusion rate is much higher than the indent rate. The two major problems are easy to solve in terms of the Maximum-Effective-Moment (MEM) Criterion that predicts that orientations of the shear zones are theoretically at an angle of 54.7° and practically at angles of 55°± 10° with the σ1- or contractional direction. The orientations of the strike-slip faults that accommodate extrusion tectonics are, therefore, fundamentally controlled by the MEM Criterion. When extrusion is along the MEM-orientations, the extruding rate is normally higher than the indenting rate.展开更多
基金Supported by Science Foundation of Guangdong(No.990 577)
文摘A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltage and current data.The loop and nodal equations comparing faulted phase with non faulted phase of two parallel lines are introduced in the fault location estimation models,in which the source impedance of a remote end is not involved.The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated,therefore precise algorithms of locating fault are derived.The algorithm is demonstrated by digital computer simulations.
文摘In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.
基金Tibet Autonomous Region Natural Fund Key Project(XZ202201ZR0024G)。
文摘The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network.In order to enhance the safety and reliability of power distribution,this paper focuses on the analysis of faults in the 10kV distribution network caused by natural factors,operational factors,human factors,and equipment factors.It elucidates the various hazards resulting from distribution network faults and proposes corresponding preventive measures for different types of faults in the 10kV distribution network.The aim is to mitigate or reduce the impact of distribution network faults,ensuring the safe and stable operation of the distribution system.
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
基金Postdoctoral Foundation of China(No.20070410755)PAN Zhencun,born in 1962,male,postdoctor researcher.
文摘A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.
文摘An accurate numerical algorithm for three-line fault involving different phases from each of two-parallel lines is presented. It is based on one-terminal voltage and current data. The loop and nodel equations comparing faulted phase to non-faulted phase of two-parallel lines are introduced in the fault location estimation modal, in which the faulted impedance of remote end is not involved. The effect of load flow and fault resistance on the accuracy of fault location are effectively eliminated, therefore an accurate algorithm of locating fault is derived. The algorithm is demonstrated by digital computer simulations and the results show that errors in locating fault are less than 1%.
文摘Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impedance andthe fault resistance.The distributed parameter model and the modal transformationare also employed.Depending on modal transformation,the coupled equations of the lines are converted intodecoupled ones.Inthis way,the mutual coupling effects between adjacent circuits of the lines are eliminatedandtherefore an accurate fault location can be achieved.The proposed methodis tested via digital simulationusing EMTP in conjunction with MATLAB.The test results corroborate the high accuracy of the proposedmethod.
基金Project Supported by Chongqing Science and Technology Committee(2005AA600)
文摘This paper introduced correlation method to locate transmission line fault.First it described the principle of transmission line fault location based on traveling waves.The principle of correlation analysis is introduced,then the method using correlation analysis in fault location is given.Transmission line model is established with EMTP-ATP.Basing on the model,some kinds of fault are simulated.The feasibility of this algorithm is proved based on simulation results.By comparing with the classical wavelet analysis,this paper gave the advantages of this algorithm in two cases:noise influence suppression and accuracy of near distance fault location.Experiment is established to simulate transmission line grounding fault.The experiment result showed the correlation algorithm's validity.All the analysis result indicated that the correlation algorithm have a high precision.
文摘The results of T-Line Traveling Wave Fault Location is easily influenced by the wave arrival time and traveling wave propagation velocity;it proposes that the traveling wave uses wavelet transform to extract the modulus maxima of breakdown voltage, to confirm the time of the traveling wave reaching the three-terminal line. The speed of the traveling wave reaching three terminals is confirmed by the structural parameters of the transmission line. We apply the arrival time and propagation velocity to the T-type traveling wave fault location algorithm. Different transmission line distance select the corresponding algorithm, excluding the impact of fault branches and in some cases ranging accuracy, the failure dead zone will not appear. After MATLAB simulation analysis, the algorithm analysis is clear;the range accuracy is high, so that it can meet the requirements of fault location.
文摘Fault detection and diagnosis for pneumatic system of automatic productionline are studied. An expert system using fuzzy-neural network and pneumatic circuit fault diagnosisinstrument are deigned. The mathematical model of various pneumatic faults and experimental deviceare built. In the end, some experiments are done, which shows that the expert system usingfuzzy-neural network can diagnose fast and truly fault of pneumatic circuit.
文摘An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.
文摘Fault location and distance protection are essential smart grid technologies ensuring reliability of the power system. This paper describes an accurate algorithm for locating faults on double-circuit transmission lines. The proposed approach is capable of identifying the faulted circuit of a parallel transmission line by checking the estimated fault location and fault resistance. Voltage and current measurements from only one of the terminals of the faulty line are used. No pre-fault data are required for the estimation. The lumped parameter line model considering shunt capacitance is utilized for the derivation of the algorithm. It’s assumed that line parameters are known and transmission lines are fully transposed. The method is applicable to all types of faults. It’s evinced by evaluation studies that the proposed algorithm can correctly determine the faulted circuit in most cases. For exceptional cases, the current waveforms during the fault can be used to help identify the faulted circuit. The proposed algorithm generates quite accurate fault location estimates, and may be suitable for distance relaying.
文摘When single phase earth fault occurs in the arc suppression coil grounding system, the amplitude of the transient capacitance current is high and decays fast, but the attenuation of the transient inductance current is much slower. This paper analyses the DC component of fault branch, and has found it is much bigger than that of the normal branches in transient state. All the simulation results obtained from three compensation types, different fault time and different wave cycles show that the DC component of fault branch is much higher than that of those normal branches. These results verify the effectiveness of taking the DC component as the method of fault line selection in the arc suppression coil grounding system.
文摘Diexi earthquake(M7.5)in 1933 is a great event that occurred at the east border of Qinghai- Xizang Plateau in the 20th century.There are obviously different opinions about the shape ofisoseismal lines and the genetic fault of this earthquke.Based on the study of the newlyfound north-south trending active fault and ground fissures of Diexi earthquake,this papertends to hold that,as the southward extension of Miujiang fault,this north-south trendingactive fault might be the genetic fault of this event.
文摘Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.
文摘The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capability of online as well as offline testable digital circuits for both permanent and transient faults, during the design stage of the circuits. This paper presents a technique for transient and permanent fault injection at the VHDL level description of both combinational and sequential digital circuits. Access to all VHDL blocks a system is straight forward using a specially designed single fault injection block. This capability of inserting transient and permanent faults should help in evaluating the testability of a digital system before it is actually implemented.
基金supported by the National Nature Sciences Foundation of China(NNSFC/Grant Nos.90714006 and 40872133)
文摘Wide-open V-shaped conjugate strike-slip faults in Asia are typically related to extrusion tectonics. However, the tectonic model based on the slip-line theory of plasticity has some critical problems associated with it. The conjugate sets of slip-lines in plane deformation, according to the theory of plasticity should be normal to each another but, in reality, the angles between the conjugate strike-slip faults, which are regarded as slip-lines in extrusion tectonics in the eastern Mediterranean, Tibet-middle Asia, China and the Indochina Peninsular regions, are always more than 90° (on average -110°) in the direction of contraction. Another problem is that the slip-line theory fails to explain how, in some cases, e.g., in the Anatolian area in the eastern Mediterranean, the extrusion rate is much higher than the indent rate. The two major problems are easy to solve in terms of the Maximum-Effective-Moment (MEM) Criterion that predicts that orientations of the shear zones are theoretically at an angle of 54.7° and practically at angles of 55°± 10° with the σ1- or contractional direction. The orientations of the strike-slip faults that accommodate extrusion tectonics are, therefore, fundamentally controlled by the MEM Criterion. When extrusion is along the MEM-orientations, the extruding rate is normally higher than the indenting rate.