Optical line tweezers have been an efficient tool for the manipulation of large micron particles. In this paper, we propose to create line traps with transformable configurations by using the transverse electromagneti...Optical line tweezers have been an efficient tool for the manipulation of large micron particles. In this paper, we propose to create line traps with transformable configurations by using the transverse electromagnetic mode-like laser source.We designed an optical path to simulate the generation of the astigmatic beams and line traps with a series of lenses to realize the rotational transformation with respect to the rotation angle of cylindrical lenses. It is shown that the spherical particles with diameters ranging from 5 μm to 20 μm could be trapped, aligned, and revolved in experiment. The periodical trapping forces generated by transformable line traps might open an alternative way to investigate the mechanical properties of soft particles and biological cells.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.61965008)Guangxi Natural Science Foundation(No.AD21220086)+1 种基金Scientific Research Project for Guangxi University(No.2020KY05022)Guangxi Key Laboratory(Nos.YQ21109 and GD21103).
文摘Optical line tweezers have been an efficient tool for the manipulation of large micron particles. In this paper, we propose to create line traps with transformable configurations by using the transverse electromagnetic mode-like laser source.We designed an optical path to simulate the generation of the astigmatic beams and line traps with a series of lenses to realize the rotational transformation with respect to the rotation angle of cylindrical lenses. It is shown that the spherical particles with diameters ranging from 5 μm to 20 μm could be trapped, aligned, and revolved in experiment. The periodical trapping forces generated by transformable line traps might open an alternative way to investigate the mechanical properties of soft particles and biological cells.