This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-K...This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.展开更多
In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the Interna...In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.展开更多
The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are de...The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.展开更多
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear...The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.展开更多
This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional th...This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.展开更多
This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is pr...This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.展开更多
This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator...This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator, the design of the FDF is formulated into an optimization problem through maximizing the H_/H∞ or H∞/H∞ performance index. With the aid of an operator optimization method, it is shown that a mode-dependent unified optimal solution can be derived by solving a coupled Riccati equation. A numerical example is given to show the effectiveness of the proposed method.展开更多
The robustly asymptotical stability problem for discrete-time nonlinear systems with time-delay was investigated. Positive definite matrix are constructed through Lyapunov functional. With the identity transform, prop...The robustly asymptotical stability problem for discrete-time nonlinear systems with time-delay was investigated. Positive definite matrix are constructed through Lyapunov functional. With the identity transform, property of matrix inverse and S-procedure, a new sufficient condition independent of the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is established. With Schur complement, another equivalent sufficient condition for robust stability of discrete-time nonlinear systems with time-delay is given. Finally, a sufficient condition dependent on the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is obtained. A unified approach is used to cast the robust stability problem into a convex optimization involving linear matrix inequalities.展开更多
This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller u...This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.展开更多
The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown t...The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown that: 1) if the positive system has decoupling zeros then the corresponding standard system has also decoupling zeros, 2) the positive system may not have decoupling zeros when the corresponding standard system has decoupling zeros, 3) the positive and standard systems have the same decoupling zeros if the rank of reachability (observability) matrix is equal to the number of linearly independent monomial columns (rows) and some additional assumptions are satisfied.展开更多
This paper considers the stability analysis of uncertain discrete-time piecewise linear systems with time delays based on piecewise Lyapunov-Krasovskii functionals. It is shown that the stability can be established fo...This paper considers the stability analysis of uncertain discrete-time piecewise linear systems with time delays based on piecewise Lyapunov-Krasovskii functionals. It is shown that the stability can be established for the control systems if there is a piecewise Lyapunov-Krasovskii functional, and moreover, the functional can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. A numerical example is given to demonstrate the efficiency and advantage of the proposed method.展开更多
In this paper,some kinds of linear and nonlinear tracking-differentiators are designed by using suitable exponent functions instead of switch functions,and the stability of these tracking-differentiators is proved.Fro...In this paper,some kinds of linear and nonlinear tracking-differentiators are designed by using suitable exponent functions instead of switch functions,and the stability of these tracking-differentiators is proved.From the result of simulations,it is manifest that the tracking speeds of these kinds of linear and nonlinear tracking-differentiators are very high,and their design procedures are simple.展开更多
The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bo...The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bounded uncertainties respectively.The basic idea of the proposed approaches is to construct piecewise-quadratic (PWQ) Lyapunov functions to guarantee the stability of the closed-loop systems.The partition information of the PWA systems is taken into account and each polytopic operating region is outer approximated by an ellipsoid,then sufficient conditions for the robust stabilization are derived and expressed as a set of linear matrix inequalities (LMIs).Two examples are given to illustrate the proposed theoretical results.展开更多
This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all ag...This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.展开更多
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e....The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.展开更多
The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of...The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.展开更多
In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estim...In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.展开更多
The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensure...The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.展开更多
This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms...This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms is first established. Then, some new delay-dependent criteria are derived by employing the new inequality to guarantee the robust stability of a closed-loop system with a prescribed H-infinity norm bound for all admissible uncertainties and bounded time-vary delays. A numerical example demonstrates that the proposed method is an improvement over existing ones.展开更多
This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both th...This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both the control action and the learning action in RCS. Then, through constructing a 2D state feedback controller, the design problem of the RCS is converted to the design problem of a 2D system. Then, using 2D system theory and linear matrix inequality (LMI) method, stability criterion is derived for the system without and with uncertainties, respectively. Parameters of the system can be determined by solving the LMI of the stability criterion. Finally, numerical simulations validate the effectiveness of the proposed method.展开更多
文摘This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.
文摘In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.
文摘The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.
基金This work was partially supported by RGC Grant 7103/01P and the open project of the state key Laboratory of intelligent and Systems,Tsinghua University(No.0406).
文摘The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.
文摘This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete-time systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
文摘This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(6117412161121003+2 种基金61203083)the Research Fund for the Doctoral Program of Higher Education of Chinathe Doctoral Foundation of University of Jinan(XBS1242)
文摘This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator, the design of the FDF is formulated into an optimization problem through maximizing the H_/H∞ or H∞/H∞ performance index. With the aid of an operator optimization method, it is shown that a mode-dependent unified optimal solution can be derived by solving a coupled Riccati equation. A numerical example is given to show the effectiveness of the proposed method.
基金Project (60425310) supported by the National Natural Science Foundation of China project (2001AA4422200) supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education of China
文摘The robustly asymptotical stability problem for discrete-time nonlinear systems with time-delay was investigated. Positive definite matrix are constructed through Lyapunov functional. With the identity transform, property of matrix inverse and S-procedure, a new sufficient condition independent of the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is established. With Schur complement, another equivalent sufficient condition for robust stability of discrete-time nonlinear systems with time-delay is given. Finally, a sufficient condition dependent on the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is obtained. A unified approach is used to cast the robust stability problem into a convex optimization involving linear matrix inequalities.
文摘This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.
文摘The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown that: 1) if the positive system has decoupling zeros then the corresponding standard system has also decoupling zeros, 2) the positive system may not have decoupling zeros when the corresponding standard system has decoupling zeros, 3) the positive and standard systems have the same decoupling zeros if the rank of reachability (observability) matrix is equal to the number of linearly independent monomial columns (rows) and some additional assumptions are satisfied.
文摘This paper considers the stability analysis of uncertain discrete-time piecewise linear systems with time delays based on piecewise Lyapunov-Krasovskii functionals. It is shown that the stability can be established for the control systems if there is a piecewise Lyapunov-Krasovskii functional, and moreover, the functional can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. A numerical example is given to demonstrate the efficiency and advantage of the proposed method.
基金Supported by the National Natural Science Foundation of China (6 0 1 740 2 1 ) and Tianjin Key NaturalScience Foundation(0 1 3 80 0 71 1 )
文摘In this paper,some kinds of linear and nonlinear tracking-differentiators are designed by using suitable exponent functions instead of switch functions,and the stability of these tracking-differentiators is proved.From the result of simulations,it is manifest that the tracking speeds of these kinds of linear and nonlinear tracking-differentiators are very high,and their design procedures are simple.
基金supported by the National Science Fund of China for Distinguished Young Scholars(No.60725311)
文摘The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bounded uncertainties respectively.The basic idea of the proposed approaches is to construct piecewise-quadratic (PWQ) Lyapunov functions to guarantee the stability of the closed-loop systems.The partition information of the PWA systems is taken into account and each polytopic operating region is outer approximated by an ellipsoid,then sufficient conditions for the robust stabilization are derived and expressed as a set of linear matrix inequalities (LMIs).Two examples are given to illustrate the proposed theoretical results.
基金supported by Deanship of Scientific research(CDSR)at KFUPM(RG-1316-1)
文摘This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.
基金Postdoctoral Science Foundation of China (No. 20060400980)Postdoctoral Science Foundation of Shandong Province(No. 200603015)National Science Foundation of China (No. 10671112)
文摘The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.
基金supported by the National Natural Science Foundation of China (No.60874007)
文摘The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.
基金supported by National Natural Science Foundationof China (No. 60850004)
文摘In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
文摘The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.
基金This work was partially supported by the National Science Foundation of China (No. 60425310, 60574014), the Doctor Subject Foundation of China(No. 20050533015) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministryof Education, P. R. China (TRAPOYT).
文摘This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms is first established. Then, some new delay-dependent criteria are derived by employing the new inequality to guarantee the robust stability of a closed-loop system with a prescribed H-infinity norm bound for all admissible uncertainties and bounded time-vary delays. A numerical example demonstrates that the proposed method is an improvement over existing ones.
基金supported by National Natural Science Foundation of China (Nos. 60974045 and 60674016)the Research Foundation of Education Bureau of Hunan Province, China (No. 08C090)
文摘This paper presents a novel design method for discrete-time repetitive control systems (RCS) based on two-dimensional (2D) discrete-time model. Firstly, the 2D model of an RCS is established by considering both the control action and the learning action in RCS. Then, through constructing a 2D state feedback controller, the design problem of the RCS is converted to the design problem of a 2D system. Then, using 2D system theory and linear matrix inequality (LMI) method, stability criterion is derived for the system without and with uncertainties, respectively. Parameters of the system can be determined by solving the LMI of the stability criterion. Finally, numerical simulations validate the effectiveness of the proposed method.