Doing business in China, while lucrative, can be a minefield to the uninitiated. This regular column by Deloitte will provide specific information to give businesspeople the tools they need to facilitate this process.
We propose a forward approach to study the performance of liquidation strategies under sequential model parameter updates.The forward liquidation program consists of pasting forward in time and in a time-consistent fa...We propose a forward approach to study the performance of liquidation strategies under sequential model parameter updates.The forward liquidation program consists of pasting forward in time and in a time-consistent fashion a series of optimal liquidation problems.They are triggered at the parameter shift instances,thus entirely eliminating model error,and last at most till the next parameter update.However,due to the nature of the model dynamics,solutions may cease to exist in finite time,even before the subsequent parameter update.Furthermore,forward liquidation strategies may never lead to full liquidation,even though they maximize the average utility of revenue and always preserve time-consistency.In juxtaposition,the traditional approach delivers full liquidation at the sought horizon but encounters considerable model error,generates value erosion,and is time-inconsistent.展开更多
Based on the minimum loss probability criterion,this paper discusses the optimal strategy in multi-asset liquidation.First,we give the framework of the multi-asset liquidation problem and obtain the boundary condition...Based on the minimum loss probability criterion,this paper discusses the optimal strategy in multi-asset liquidation.First,we give the framework of the multi-asset liquidation problem and obtain the boundary conditions of the optimal liquidation strategy under the assumption of linear price impact functions and transform the multi-asset liquidation problem into the portfolio liquidation problem.On this basis,the asymptotic solution and numerical solution of the optimal liquidation strategy are obtained.Then,we simulate the trajectories of the optimal liquidation strategy and analyze the effects of parameters changes.展开更多
This paper proposes a two-period model to examine which bankruptcy procedure is better for both the debtor and creditor when insolvency happens.Our theoretical model depicts how firm size,industry characteristics,equi...This paper proposes a two-period model to examine which bankruptcy procedure is better for both the debtor and creditor when insolvency happens.Our theoretical model depicts how firm size,industry characteristics,equity structure,and debt structure determine firms’bankruptcy resolutions.Using a comprehensive sample of bankrupt firms in the United States,we verify the predictions of a theoretical model.In our study,we deploy Probit and Logit models to address the predictions in the theoretical framework and conduct a series of robustness checks with econometric methods like Propensity Score Matching to confirm the empirical results.This paper finds that firms with larger size have more chance to file for Chapter 11 reorganization when insolvency happens.We also find that firms in asset-heavy(asset-light)industries are more likely to be reorganized(liquidated)under U.S.bankruptcy code.展开更多
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Na...Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity,but also exhibit remarkable anti-inflammatory properties.However,the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood.In this study,we developed perfluoropentane-based oxygen-loaded nanodroplets(PFP-OLNDs)and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo,and suppressed microglial activation in a mouse model of Parkinson’s disease.Microglial suppression led to a reduction in the inflammatory response,oxidative stress,and cell migration capacity in vitro.Consequently,the neurotoxic effects were mitigated,which alleviated neuronal degeneration.Additionally,ultrahigh-performance liquid chromatography–tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming.We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1αpathway.Collectively,our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instan...This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.展开更多
BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients a...BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.展开更多
Ammonia(NH3)is a carbon-free,hydrogen-rich chemical related to global food safety,clean energy,and environmental protection.As an essential technology for meeting the requirements raised by such issues,NH3 capture has...Ammonia(NH3)is a carbon-free,hydrogen-rich chemical related to global food safety,clean energy,and environmental protection.As an essential technology for meeting the requirements raised by such issues,NH3 capture has been intensively explored by researchers in both fundamental and applied fields.The four typical methods used are(1)solvent absorption by ionic liquids and their derivatives,(2)adsorption by porous solids,(3)abadsorption by porous liquids,and(4)membrane separation.Rooted in the development of advanced materials for NH3 capture,we conducted a coherent review of the design of different materials,mainly in the past 5 years,their interactions with NH3 molecules and construction of transport pathways,as well as the structure–property relationship,with specific examples discussed.Finally,the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.展开更多
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu...An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.展开更多
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from ...An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from anodic dissolution.A higher salt concentration is needed in the electrolyte,in comparison to typical battery electrolytes,to maximize energy density,while ensuring acceptable ionic conductivity and operational safety.In recent years,studies have demonstrated that highly concentrated organic electrolytes,ionic liquids,gel polymer electrolytes(GPEs),ionogels,and water-in-salt electrolytes can potentially be used in DIBs.GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency,energy density,and long-term cycle life of DIBs.Furthermore,GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance.In this review,we highlight the latest advances in the application of different electrolytes in DIBs,with particular emphasis on GPEs.展开更多
In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to...In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.展开更多
Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conducto...Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics.展开更多
With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great ...With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine.cfDNA is the total amount of free DNA in the systemic circulation,including DNA fragments derived from tumor cells and all other somatic cells.Tumor cells release fragments of DNA into the bloodstream,and this source of cfDNA is called circulating tumor DNA(ctDNA).cfDNA detection has become a major focus in the field of tumor research in recent years,which provides a new opportunity for non-invasive diagnosis and prognosis of cancer.In this paper,we discuss the limitations of the study on the origin and dynamics analysis of ctDNA,and how to solve these problems in the future.Although the future faces major challenges,it also con-tains great potential.展开更多
文摘Doing business in China, while lucrative, can be a minefield to the uninitiated. This regular column by Deloitte will provide specific information to give businesspeople the tools they need to facilitate this process.
文摘We propose a forward approach to study the performance of liquidation strategies under sequential model parameter updates.The forward liquidation program consists of pasting forward in time and in a time-consistent fashion a series of optimal liquidation problems.They are triggered at the parameter shift instances,thus entirely eliminating model error,and last at most till the next parameter update.However,due to the nature of the model dynamics,solutions may cease to exist in finite time,even before the subsequent parameter update.Furthermore,forward liquidation strategies may never lead to full liquidation,even though they maximize the average utility of revenue and always preserve time-consistency.In juxtaposition,the traditional approach delivers full liquidation at the sought horizon but encounters considerable model error,generates value erosion,and is time-inconsistent.
基金the National Natural Science Foundation of China(Grant No.71671017).
文摘Based on the minimum loss probability criterion,this paper discusses the optimal strategy in multi-asset liquidation.First,we give the framework of the multi-asset liquidation problem and obtain the boundary conditions of the optimal liquidation strategy under the assumption of linear price impact functions and transform the multi-asset liquidation problem into the portfolio liquidation problem.On this basis,the asymptotic solution and numerical solution of the optimal liquidation strategy are obtained.Then,we simulate the trajectories of the optimal liquidation strategy and analyze the effects of parameters changes.
基金This research is supported by National Natural Science Foundation of China[grant number 71531010].
文摘This paper proposes a two-period model to examine which bankruptcy procedure is better for both the debtor and creditor when insolvency happens.Our theoretical model depicts how firm size,industry characteristics,equity structure,and debt structure determine firms’bankruptcy resolutions.Using a comprehensive sample of bankrupt firms in the United States,we verify the predictions of a theoretical model.In our study,we deploy Probit and Logit models to address the predictions in the theoretical framework and conduct a series of robustness checks with econometric methods like Propensity Score Matching to confirm the empirical results.This paper finds that firms with larger size have more chance to file for Chapter 11 reorganization when insolvency happens.We also find that firms in asset-heavy(asset-light)industries are more likely to be reorganized(liquidated)under U.S.bankruptcy code.
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
基金supported by the National Natural Science Foundation of China,No.82101327(to YY)President Foundation of Nanfang Hospital,Southern Medical University,No.2020A001(to WL)+1 种基金Guangdong Basic and Applied Basic Research Foundation,Nos.2019A1515110150,2022A1515012362(both to YY)Guangzhou Science and Technology Project,No.202201020111(to YY).
文摘Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity,but also exhibit remarkable anti-inflammatory properties.However,the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood.In this study,we developed perfluoropentane-based oxygen-loaded nanodroplets(PFP-OLNDs)and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo,and suppressed microglial activation in a mouse model of Parkinson’s disease.Microglial suppression led to a reduction in the inflammatory response,oxidative stress,and cell migration capacity in vitro.Consequently,the neurotoxic effects were mitigated,which alleviated neuronal degeneration.Additionally,ultrahigh-performance liquid chromatography–tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming.We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1αpathway.Collectively,our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
基金granted by the National Key R&D Program of China (2021YFD21001005)National Natural Science Foundation of China (31972102,32101980)+1 种基金Special key project of Chongqing technology innovation and application development (cstc2021jscx-cylhX0014)Chongqing Technology Innovation and Application Development Special Project (cstc2021jscx-tpyzxX0014)。
文摘This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.
基金This study was reviewed and approved by the Maternal and child health hospital of Hubei Province(Approval No.20201025).
文摘BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.
基金financially supported by the National Natural Science Foundation of China(22178357)CAS Project for Young Scientists in Basic Research(YSBR-038)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020047)the research fund of State Key Laboratory of Mesoscience and Engineering(MESO-23-A07,MESO-23-T02)。
文摘Ammonia(NH3)is a carbon-free,hydrogen-rich chemical related to global food safety,clean energy,and environmental protection.As an essential technology for meeting the requirements raised by such issues,NH3 capture has been intensively explored by researchers in both fundamental and applied fields.The four typical methods used are(1)solvent absorption by ionic liquids and their derivatives,(2)adsorption by porous solids,(3)abadsorption by porous liquids,and(4)membrane separation.Rooted in the development of advanced materials for NH3 capture,we conducted a coherent review of the design of different materials,mainly in the past 5 years,their interactions with NH3 molecules and construction of transport pathways,as well as the structure–property relationship,with specific examples discussed.Finally,the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.
基金the financial supports from National Natural Science Foundation of China(22172066,22378176)supported by State Key Laboratory of Heavy Oil ProcessingSupported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,Suzhou University of Science and Technology。
文摘An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
基金support from Batteries Sweden(Grant No.Vinnova-2019-00064)the Stand-Up for Energy consortium,the ISCF Faraday Challenge for the project on“Degradation of Battery Materials”(Grant No.EP/S003053/1,FIRG024)the ERC(Grant No.771777 FUN POLYSTORE).
文摘An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from anodic dissolution.A higher salt concentration is needed in the electrolyte,in comparison to typical battery electrolytes,to maximize energy density,while ensuring acceptable ionic conductivity and operational safety.In recent years,studies have demonstrated that highly concentrated organic electrolytes,ionic liquids,gel polymer electrolytes(GPEs),ionogels,and water-in-salt electrolytes can potentially be used in DIBs.GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency,energy density,and long-term cycle life of DIBs.Furthermore,GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance.In this review,we highlight the latest advances in the application of different electrolytes in DIBs,with particular emphasis on GPEs.
基金supported by the National Natural Science Foundation of China(Nos.12005289 and 52071331)the National Key R&D Program of China(No.2019YFA0210000)the State Key Laboratory of Nuclear Detection and Electronics,University of Science and Technology of China(No.SKLPDE-KF-202316)。
文摘In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.
基金supported by the National Natural Science Foundation of China(Nos.52122511,61927814,and U20A20290)Anhui Provincial Natural Science Foundation(2308085QF218)+5 种基金China National Postdoctoral Program for Innovative Talents(BX20230351)China Postdoctoral Science Foundation(2023M733382)National Key R&D Program of China(2021YFF0502700)Major Scientific and Technological Projects in Anhui Province(202203a05020014)Fundamental Research Funds for the Central Universities(WK5290000003 and WK2090000058)Youth Innovation Promotion Association CAS(Y2021118)。
文摘Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics.
基金Supported by Talent Scientific Research Start-up Foundation of Wannan Medical College,No.WYRCQD2023045.
文摘With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine.cfDNA is the total amount of free DNA in the systemic circulation,including DNA fragments derived from tumor cells and all other somatic cells.Tumor cells release fragments of DNA into the bloodstream,and this source of cfDNA is called circulating tumor DNA(ctDNA).cfDNA detection has become a major focus in the field of tumor research in recent years,which provides a new opportunity for non-invasive diagnosis and prognosis of cancer.In this paper,we discuss the limitations of the study on the origin and dynamics analysis of ctDNA,and how to solve these problems in the future.Although the future faces major challenges,it also con-tains great potential.