This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the case...This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the caseof similar climate and soil type. The experimental area was situated in the Xiashu Experimental Centre ofForest, where the soil is yellow-brown soil derived from siliceous slope wash. Sample plots of these 3 standswere established to study the nutrient status in litter, the amount of nutrient uptake by roots, the quantityof nutrient output by percolating water outside the deep layer of soil, and the seasonal dynamics of availablenutrient in surface soil. It was shown that the intensity of nutrient cycling in soil under deciduous oak wasthe highest, and the effect of oak in improving soil fertility was the best. The result of improving soil fertilityby Chinese fir was the most inferior, though the intensity of nutrient cycling under that stand was higherthan that under loblolly pine stand. The influence of loblolly pine on the improvement of soil fertility wasbetter than that of Chinese fir, in spite of its lowest intensity of nutrient cycling.展开更多
Tree improvement programs on loblolly pine(Pinus taeda) in the southeastern USA has focused primarily on improving growth, form, and disease tolerance.However, due to the recent reduction of design values for visually...Tree improvement programs on loblolly pine(Pinus taeda) in the southeastern USA has focused primarily on improving growth, form, and disease tolerance.However, due to the recent reduction of design values for visually graded southern yellow pine lumber(including loblolly pine), attention has been drawn to the material quality of genetically improved loblolly pine. In this study,we used the time-of-flight(TOF) acoustic tool to assess the effect of genetic families on diameter, slenderness, fiber length, microfibril angle(MFA), velocity and dynamic stiffness estimated using green density(DMOEG) and basic density(DMOEB) of 14-year-old loblolly pine stands selected from two sites. All the 184 and 204 trees of the selected eight half-sib genetic families on sites 1 and 2 respectively were tested using TOF acoustic tool, and two 5 mm core samples taken at breast height level(1.3 m)used to for the anatomical and physical properties analysis.The results indicated a significant positive linear relationship between dynamic MOEs(DMOEGand DMOEB)versus tree diameter, slenderness, and fiber length while dynamic MOEs negatively but nonsignificant correlated with MFA. While there was no significant difference in DMOEBbetween sites; velocity 2 for site 1 was significantly higher than site 2 but DMOEGwas higher for site 2 than site 1. Again, the mean DMOEGand DMOEBreported in the present study presents a snapshot of the expected static MOE for green and 12% moisture conditions respectively for loblolly pine. Furthermore, there were significant differences between families for most of the traits measured and this suggests that forest managers have the opportunity to select families that exhibit the desired fiber morphology for final product performance. Lastly,since the dynamic MOE based on green density(DMOEG),basic density(DMOEB) and velocity 2 present difference conclusions, practitioners of this type of acoustic technique should take care when extrapolating results across the sites.展开更多
文摘This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the caseof similar climate and soil type. The experimental area was situated in the Xiashu Experimental Centre ofForest, where the soil is yellow-brown soil derived from siliceous slope wash. Sample plots of these 3 standswere established to study the nutrient status in litter, the amount of nutrient uptake by roots, the quantityof nutrient output by percolating water outside the deep layer of soil, and the seasonal dynamics of availablenutrient in surface soil. It was shown that the intensity of nutrient cycling in soil under deciduous oak wasthe highest, and the effect of oak in improving soil fertility was the best. The result of improving soil fertilityby Chinese fir was the most inferior, though the intensity of nutrient cycling under that stand was higherthan that under loblolly pine stand. The influence of loblolly pine on the improvement of soil fertility wasbetter than that of Chinese fir, in spite of its lowest intensity of nutrient cycling.
基金supported by the Auburn University Intramural funds
文摘Tree improvement programs on loblolly pine(Pinus taeda) in the southeastern USA has focused primarily on improving growth, form, and disease tolerance.However, due to the recent reduction of design values for visually graded southern yellow pine lumber(including loblolly pine), attention has been drawn to the material quality of genetically improved loblolly pine. In this study,we used the time-of-flight(TOF) acoustic tool to assess the effect of genetic families on diameter, slenderness, fiber length, microfibril angle(MFA), velocity and dynamic stiffness estimated using green density(DMOEG) and basic density(DMOEB) of 14-year-old loblolly pine stands selected from two sites. All the 184 and 204 trees of the selected eight half-sib genetic families on sites 1 and 2 respectively were tested using TOF acoustic tool, and two 5 mm core samples taken at breast height level(1.3 m)used to for the anatomical and physical properties analysis.The results indicated a significant positive linear relationship between dynamic MOEs(DMOEGand DMOEB)versus tree diameter, slenderness, and fiber length while dynamic MOEs negatively but nonsignificant correlated with MFA. While there was no significant difference in DMOEBbetween sites; velocity 2 for site 1 was significantly higher than site 2 but DMOEGwas higher for site 2 than site 1. Again, the mean DMOEGand DMOEBreported in the present study presents a snapshot of the expected static MOE for green and 12% moisture conditions respectively for loblolly pine. Furthermore, there were significant differences between families for most of the traits measured and this suggests that forest managers have the opportunity to select families that exhibit the desired fiber morphology for final product performance. Lastly,since the dynamic MOE based on green density(DMOEG),basic density(DMOEB) and velocity 2 present difference conclusions, practitioners of this type of acoustic technique should take care when extrapolating results across the sites.