Based on the demands of compact heat exchangers and micro cooling channels applied for aviation thermal protection on aero-engines,the elbow localflow resistance charac-teristics for supercritical pressure aviation fue...Based on the demands of compact heat exchangers and micro cooling channels applied for aviation thermal protection on aero-engines,the elbow localflow resistance charac-teristics for supercritical pressure aviation fuel RP-3flowing in adiabatic horizontal serpentine tubes with the inner diameter of 1.8 mm and the massflux of 1179 kg/(m^(2)·s)were experimen-tally studied.The long-short-tube method was used to obtain the elbow pressure drop from the total serpentine tube pressure drop,and the effects of system pressures(P/Pc=1.72-2.58)and geometry parameters including bend numbers(n=5-11),bend diameters(D/d=16.7-27.8),and bend distances(L/d=20-60)on elbow pressure drops and local resistance co-efficients are analyzed on the basis of the thermal physical property variation.The results show that both the increase in the elbow pressure drop and the decrease in the local resistance coef-ficient with temperatures speed up at the near pseudo-critical temperature region of T>0.85Tpc.And the growth of the elbow local pressure drop could be inhibited by the increase of system pressures,while the local resistance coefficient is slightly affected by pressures.The influence of bend diameters on the local resistance coefficient is mild when D/d is larger than 22.2 in the premise of fully developedflow in straight tubes.Furthermore,a piecewise empir-ical correlation considering the bend diameter and physical property ratio is developed to pre-dict the elbow pressure drop of the serpentine tube and optimize the layout of the cooling tube system on aero-engines.展开更多
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By emp...This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing nu- merical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and differcnt diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficicnt. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes.展开更多
During the design of pipeline,the determination of local resistant coefficient is often come arcoss.The sudden enlargement local resistant coefficient ξ 1=1-A 1A 2 2 is determined through theory.In the paper,the ...During the design of pipeline,the determination of local resistant coefficient is often come arcoss.The sudden enlargement local resistant coefficient ξ 1=1-A 1A 2 2 is determined through theory.In the paper,the sudden enlargement local resistant coefficient under the conditions of three kinds of A 1A 2 was studied in experiment.In the end ,the result shows that ξ 1 is related not only to two flow cross sections,but also to the velocity.Through experimental research,the relationship between ξ 1,A 1A 2 and V 1 was determined.In a word,the hydraulic calculation of pipeline can be done by taking correspondent ξ 1 ,according to the design velocity V 1 and A 1A 2.展开更多
Progressive collapse is a relatively rare event which happens due to unusual loading on a structure that lacks adequate continuity,ductility and indeterminacy which causes local collapse in that structure and then ext...Progressive collapse is a relatively rare event which happens due to unusual loading on a structure that lacks adequate continuity,ductility and indeterminacy which causes local collapse in that structure and then extends it to other structural parts.The US department of defense published UFC4-023-03 regulation regarding the building design against progressive collapse.This regulation,based on the ASCE 7-05 standard,introduces two general approaches to building design against progressive collapse,including direct design and indirect design approaches.In this study,a variety of structural design methods for progressive collapse have been investigated.Moreover,their strengths and weaknesses have been mentioned.In general,the results of this study show that design based on alternative path(AP)method is more economical than other methods.Moreover,application of AP method is much more commonly accepted by researchers and designers.展开更多
The different state of the submerged vegetation has different influences on the flow resistance. This paper explores the relationship between the state and the resistance of an individual submerged vegetation, and the...The different state of the submerged vegetation has different influences on the flow resistance. This paper explores the relationship between the state and the resistance of an individual submerged vegetation, and the relative bending rigidity of the submerged vegetation is determined by the state of the submerged vegetation. Based on the experimental observations, the state and the resistance of an individual submerged vegetation are analyzed under different inflow conditions. At the same time, the influences of the various submerged vegetations on the flow resistance are discussed under the same inflow conditions. Some interesting relationships are obtained between the flow resistance and the relative bending rigidity of the submerged vegetation, and it is shown that the flow resistance increases with the increase of the relative bending rigidity of the submerged vegetation, and they are positively correlated.展开更多
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses si...In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.展开更多
The character of variations of the local electric resistance and magnetic susceptibility of film polymer composites with graded anisotropic structures on the basis of polyvinyl alcohol, graphite and nickel nano-powder...The character of variations of the local electric resistance and magnetic susceptibility of film polymer composites with graded anisotropic structures on the basis of polyvinyl alcohol, graphite and nickel nano-powders have been studied. Graded anisotropic structures are formed after orientation (stretching) in spatial conditions of thin polymer composites. Structure anisotropy leads to anisotropy both electrical conductivity and magnetic properties of these films. It is established that the changes of these parameters essentially depend on both initial shape of the films and on direction of their orientation. So, after orientation of the rectangle films parallel to it any side forms the film, electrical resistance of which in parallel and rectangle directions to orientation axis changes by Gauss low. The composites containing the magnetic particles after orientation are characterized with analogical regularity (extreme dependence of the magnetic susceptibility on the coordinates of the film along and perpendicular to stretching directions). Gradient distribution of the local resistances and magnetic susceptibilities in the stretched films along and rectangle to stretching direction is due to gradient of local deformations in the same directions. In electronics these films can be useful for preparing of muitifunctional printed circuits of new generation.展开更多
Induced systemic resistance(ISR)is a mechanism by which certain plant beneficial rhizobacteria and fungi produce immunity,which can stimulate crop growth and resilience against various phytopathogens,insects,and paras...Induced systemic resistance(ISR)is a mechanism by which certain plant beneficial rhizobacteria and fungi produce immunity,which can stimulate crop growth and resilience against various phytopathogens,insects,and parasites.These beneficial rhizobacteria and fungi improve plant performance by regulating hormone signaling,including salicylic acid(SA),jasmonic acid(JA),prosystemin,pathogenesis-related gene 1,and ethylene(ET)pathways,which activate the gene expression of ISR,the synthesis of secondary metabolites,various enzymes,and volatile compounds that ultimately induce defense mechanisms in plant.To protect themselves from disease,plants have various advanced defense mechanisms in which local acquired resistance,systemic gene silencing,systemic wound response,systemic acquired resistance(SAR),and ISR are involved.Several rhizobacteria activate the SA-dependent SAR pathway by producing SA at the root’s surface.In contrast,other rhizobacteria can activate different signaling pathways independent of SA(SA-independent ISR pathways)such as those dependent on JA and ET signaling.The main objective of this review is to provide insight into the types of induced resistance utilized for plant defense.Further to this,the genetic approaches used to suppress disease-causing genes,i.e.,RNA interference and antisense RNA,which are still underutilized in sustainable agriculture,along with the current vision for virus-induced gene silencing are also discussed.展开更多
High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the maj...High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the major portion of the cost.Although nonprecious metal catalysts(NPMCs)show appreciable activity and stability in the oxygen reduction reaction(ORR),the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL.Therefore,most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport.In this work,the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures,one containing low-Pt-based CCL and NPMCbased dummy catalyst layer(DCL)and the other containing only the NPMC-based CCL.Using Zn-N-C based DCLs of different thickness,the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis.Then,the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy,respectively.Results show that the ratios of local and bulk oxygen transport resistances in NPMCbased CCL are 80%and 20%,respectively,and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs.Furthermore,the activity of active sites per unit in NPMCbased CCLs was determined to be lower than that in the Pt-based CCL,thus explaining worse cell performance of NPMC-based membrane electrode assemblys(MEAs).It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.展开更多
基金Fundamental Research Funds for the Central Universities (No.501XTCX2023146001 and 501QYZX2023146001)the National Major Science and Technology Projects of China (Nos.J2019-III-0021-0065 and J2019-III-0015-0059)the Science Center for Gas Turbine Project (No.P2022-C-II-005-001).
文摘Based on the demands of compact heat exchangers and micro cooling channels applied for aviation thermal protection on aero-engines,the elbow localflow resistance charac-teristics for supercritical pressure aviation fuel RP-3flowing in adiabatic horizontal serpentine tubes with the inner diameter of 1.8 mm and the massflux of 1179 kg/(m^(2)·s)were experimen-tally studied.The long-short-tube method was used to obtain the elbow pressure drop from the total serpentine tube pressure drop,and the effects of system pressures(P/Pc=1.72-2.58)and geometry parameters including bend numbers(n=5-11),bend diameters(D/d=16.7-27.8),and bend distances(L/d=20-60)on elbow pressure drops and local resistance co-efficients are analyzed on the basis of the thermal physical property variation.The results show that both the increase in the elbow pressure drop and the decrease in the local resistance coef-ficient with temperatures speed up at the near pseudo-critical temperature region of T>0.85Tpc.And the growth of the elbow local pressure drop could be inhibited by the increase of system pressures,while the local resistance coefficient is slightly affected by pressures.The influence of bend diameters on the local resistance coefficient is mild when D/d is larger than 22.2 in the premise of fully developedflow in straight tubes.Furthermore,a piecewise empir-ical correlation considering the bend diameter and physical property ratio is developed to pre-dict the elbow pressure drop of the serpentine tube and optimize the layout of the cooling tube system on aero-engines.
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金supported by Shandong Provincial Natural Science Foundation,China(No.ZR2014JL039)
文摘This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing nu- merical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and differcnt diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficicnt. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes.
文摘During the design of pipeline,the determination of local resistant coefficient is often come arcoss.The sudden enlargement local resistant coefficient ξ 1=1-A 1A 2 2 is determined through theory.In the paper,the sudden enlargement local resistant coefficient under the conditions of three kinds of A 1A 2 was studied in experiment.In the end ,the result shows that ξ 1 is related not only to two flow cross sections,but also to the velocity.Through experimental research,the relationship between ξ 1,A 1A 2 and V 1 was determined.In a word,the hydraulic calculation of pipeline can be done by taking correspondent ξ 1 ,according to the design velocity V 1 and A 1A 2.
文摘Progressive collapse is a relatively rare event which happens due to unusual loading on a structure that lacks adequate continuity,ductility and indeterminacy which causes local collapse in that structure and then extends it to other structural parts.The US department of defense published UFC4-023-03 regulation regarding the building design against progressive collapse.This regulation,based on the ASCE 7-05 standard,introduces two general approaches to building design against progressive collapse,including direct design and indirect design approaches.In this study,a variety of structural design methods for progressive collapse have been investigated.Moreover,their strengths and weaknesses have been mentioned.In general,the results of this study show that design based on alternative path(AP)method is more economical than other methods.Moreover,application of AP method is much more commonly accepted by researchers and designers.
基金supported by the National Natural Science Foundation of China(Grant No.51179057)
文摘The different state of the submerged vegetation has different influences on the flow resistance. This paper explores the relationship between the state and the resistance of an individual submerged vegetation, and the relative bending rigidity of the submerged vegetation is determined by the state of the submerged vegetation. Based on the experimental observations, the state and the resistance of an individual submerged vegetation are analyzed under different inflow conditions. At the same time, the influences of the various submerged vegetations on the flow resistance are discussed under the same inflow conditions. Some interesting relationships are obtained between the flow resistance and the relative bending rigidity of the submerged vegetation, and it is shown that the flow resistance increases with the increase of the relative bending rigidity of the submerged vegetation, and they are positively correlated.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos.51309040, 51379033, 51209027, 51309025), Open Research Fund of State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (Grant No.1402), and Fundamental Research Fund for the Central Universities (DMU3132015089).
文摘In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.
文摘The character of variations of the local electric resistance and magnetic susceptibility of film polymer composites with graded anisotropic structures on the basis of polyvinyl alcohol, graphite and nickel nano-powders have been studied. Graded anisotropic structures are formed after orientation (stretching) in spatial conditions of thin polymer composites. Structure anisotropy leads to anisotropy both electrical conductivity and magnetic properties of these films. It is established that the changes of these parameters essentially depend on both initial shape of the films and on direction of their orientation. So, after orientation of the rectangle films parallel to it any side forms the film, electrical resistance of which in parallel and rectangle directions to orientation axis changes by Gauss low. The composites containing the magnetic particles after orientation are characterized with analogical regularity (extreme dependence of the magnetic susceptibility on the coordinates of the film along and perpendicular to stretching directions). Gradient distribution of the local resistances and magnetic susceptibilities in the stretched films along and rectangle to stretching direction is due to gradient of local deformations in the same directions. In electronics these films can be useful for preparing of muitifunctional printed circuits of new generation.
基金Gujarat Arts and Science College,India and Raiganj University,India for their support
文摘Induced systemic resistance(ISR)is a mechanism by which certain plant beneficial rhizobacteria and fungi produce immunity,which can stimulate crop growth and resilience against various phytopathogens,insects,and parasites.These beneficial rhizobacteria and fungi improve plant performance by regulating hormone signaling,including salicylic acid(SA),jasmonic acid(JA),prosystemin,pathogenesis-related gene 1,and ethylene(ET)pathways,which activate the gene expression of ISR,the synthesis of secondary metabolites,various enzymes,and volatile compounds that ultimately induce defense mechanisms in plant.To protect themselves from disease,plants have various advanced defense mechanisms in which local acquired resistance,systemic gene silencing,systemic wound response,systemic acquired resistance(SAR),and ISR are involved.Several rhizobacteria activate the SA-dependent SAR pathway by producing SA at the root’s surface.In contrast,other rhizobacteria can activate different signaling pathways independent of SA(SA-independent ISR pathways)such as those dependent on JA and ET signaling.The main objective of this review is to provide insight into the types of induced resistance utilized for plant defense.Further to this,the genetic approaches used to suppress disease-causing genes,i.e.,RNA interference and antisense RNA,which are still underutilized in sustainable agriculture,along with the current vision for virus-induced gene silencing are also discussed.
基金the National Key R&D Program of China(Grant No.2021YFB4001303)the National Natural Science Foundation of China(Grant No.21975157)。
文摘High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the major portion of the cost.Although nonprecious metal catalysts(NPMCs)show appreciable activity and stability in the oxygen reduction reaction(ORR),the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL.Therefore,most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport.In this work,the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures,one containing low-Pt-based CCL and NPMCbased dummy catalyst layer(DCL)and the other containing only the NPMC-based CCL.Using Zn-N-C based DCLs of different thickness,the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis.Then,the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy,respectively.Results show that the ratios of local and bulk oxygen transport resistances in NPMCbased CCL are 80%and 20%,respectively,and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs.Furthermore,the activity of active sites per unit in NPMCbased CCLs was determined to be lower than that in the Pt-based CCL,thus explaining worse cell performance of NPMC-based membrane electrode assemblys(MEAs).It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.