To predict the attitude of satellite during the whole deployment process and evaluate the locking impact, a numerical flexible model of a certain satellite associated with four flexible honeycomb solar panels was esta...To predict the attitude of satellite during the whole deployment process and evaluate the locking impact, a numerical flexible model of a certain satellite associated with four flexible honeycomb solar panels was established. The flexible solar panel was modeled by the finite element analysis (FEA), and the motion equations were derived by Lagrangian formulation. The locking process was based on the method of Hertzian contact, which enables one to predict the locking impact on the satellite and the subsequent oscillation of solar panels. The results reveal that locking operation has great impact on the attitude of the satellite, and the angular acceleration of satellite reaches 22.03°/s2 at the locking moment; the flexible solar panels model is feasible to predict the accurate response of the satellite during deployment and the oscillation of solar panels; the instantly impulsive force occurred during locking process is about 1.5 kN and the changing time is nearly 0.32 s. It provides an effective approach to present the flexible solar panels' deployment process and evaluate the locking impact.展开更多
文摘To predict the attitude of satellite during the whole deployment process and evaluate the locking impact, a numerical flexible model of a certain satellite associated with four flexible honeycomb solar panels was established. The flexible solar panel was modeled by the finite element analysis (FEA), and the motion equations were derived by Lagrangian formulation. The locking process was based on the method of Hertzian contact, which enables one to predict the locking impact on the satellite and the subsequent oscillation of solar panels. The results reveal that locking operation has great impact on the attitude of the satellite, and the angular acceleration of satellite reaches 22.03°/s2 at the locking moment; the flexible solar panels model is feasible to predict the accurate response of the satellite during deployment and the oscillation of solar panels; the instantly impulsive force occurred during locking process is about 1.5 kN and the changing time is nearly 0.32 s. It provides an effective approach to present the flexible solar panels' deployment process and evaluate the locking impact.