We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude o...We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude ,λz and the frequency COl of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave.展开更多
Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two...Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate.Near the EP,the system could be more sensitive to external perturbations and this may lead to enhanced sensing.In this paper,we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit.The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency.This method is simple with no requirements for additional elements or qubit device modifications.We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.展开更多
Rabi oscillation,an interband oscillation,describes periodic motion between two states that belong to different energy levels,in the presence of an oscillatory driving field.In photonics,Rabi oscillations can be mimic...Rabi oscillation,an interband oscillation,describes periodic motion between two states that belong to different energy levels,in the presence of an oscillatory driving field.In photonics,Rabi oscillations can be mimicked by applying a weak longitudinal periodic modulation to the refractive index.However,the Rabi oscillations of nonlinear states have yet to be introduced.We report the Rabi oscillations of azimuthons—spatially modulated vortex solitons—in weakly nonlinear waveguides with different symmetries.The period of the Rabi oscillations can be determined by applying the coupled mode theory,which largely depends on the modulation strength.Whether the Rabi oscillations between two states can be obtained or not is determined by the spatial symmetry of the azimuthons and the modulating potential.Our results not only deepen the understanding of the Rabi oscillation phenomena,but also provide a new avenue in the study of pattern formation and spatial field manipulation in nonlinear optical systems.展开更多
The output characteristics of neodymium-doped gadolinium vanadate(Nd:GdVO4) crystals laser with dual c-axis orthogonal gains end-pumped by two fiber-coupled diode lasers are investigated. With two 1 W semiconductor di...The output characteristics of neodymium-doped gadolinium vanadate(Nd:GdVO4) crystals laser with dual c-axis orthogonal gains end-pumped by two fiber-coupled diode lasers are investigated. With two 1 W semiconductor diode lasers pumping, the output power of TEM00 laser is 920 m W, and the optical conversion efficiency is close to 46%. By changing the relative orientations of both Nd:Gd VO4 crystals, the polarization characteristics of laser are varied. In particular, by keeping the c-axes of two Nd:Gd VO4 crystals orthogonal to each other and adjusting two diode pump lasers to operate at the same power level, the completely unpolarized light is obtained.展开更多
基金Project supported by the Ministry of Science and Technology of China(Grant Nos.2014CB921401,2017YFA0304300,2014CB921202,and2016YFA0300601)the National Natural Science Foundation of China(Grant No.11674376)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300)
文摘We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude ,λz and the frequency COl of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave.
基金supported by the State Key Development Program for Basic Research of China(Grant Nos.2017YFA0304300 and 2016YFA0300600)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030001)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000).
文摘Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate.Near the EP,the system could be more sensitive to external perturbations and this may lead to enhanced sensing.In this paper,we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit.The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency.This method is simple with no requirements for additional elements or qubit device modifications.We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.
基金supported by Guangdong Basic and Applied Basic Research Foundation(No.2018A0303130057)the National Natural Science Foundation of China(Nos.U1537210,11534008,and 11804267)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.xzy012019038 and xzy022019076)support from the NPRP 11S-1126-170033 project from the Qatar National Research Fund
文摘Rabi oscillation,an interband oscillation,describes periodic motion between two states that belong to different energy levels,in the presence of an oscillatory driving field.In photonics,Rabi oscillations can be mimicked by applying a weak longitudinal periodic modulation to the refractive index.However,the Rabi oscillations of nonlinear states have yet to be introduced.We report the Rabi oscillations of azimuthons—spatially modulated vortex solitons—in weakly nonlinear waveguides with different symmetries.The period of the Rabi oscillations can be determined by applying the coupled mode theory,which largely depends on the modulation strength.Whether the Rabi oscillations between two states can be obtained or not is determined by the spatial symmetry of the azimuthons and the modulating potential.Our results not only deepen the understanding of the Rabi oscillation phenomena,but also provide a new avenue in the study of pattern formation and spatial field manipulation in nonlinear optical systems.
基金supported by the National Natural Science Foundation of China(No.11104234)
文摘The output characteristics of neodymium-doped gadolinium vanadate(Nd:GdVO4) crystals laser with dual c-axis orthogonal gains end-pumped by two fiber-coupled diode lasers are investigated. With two 1 W semiconductor diode lasers pumping, the output power of TEM00 laser is 920 m W, and the optical conversion efficiency is close to 46%. By changing the relative orientations of both Nd:Gd VO4 crystals, the polarization characteristics of laser are varied. In particular, by keeping the c-axes of two Nd:Gd VO4 crystals orthogonal to each other and adjusting two diode pump lasers to operate at the same power level, the completely unpolarized light is obtained.